首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteriophage phiX174 is unable to replicate in Escherichia coli t3 at the restrictive temperature. However, if progeny phage synthesis is initiated at the permissive temperature, it will continue after a shift to the restrictive temperature.  相似文献   

2.
Seven cistrons in X-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form X-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type.  相似文献   

3.
Growth of phage phi105 and its deoxyribonucleic acid (DNA) was studied in radiation-sensitive mutants of Bacillus subtilis. The recA gene is required for optimal prophage induction with mitomycin C and for infectivity of prophage DNA. rec B gene is required for marker rescue from mature DNA. The importance of bacterial genes for phage DNA activity seems to depend on phage DNA structure.  相似文献   

4.
Phage phi29 deoxyribonucleic acid (DNA) replicated under conditions where semiconservative DNA production in Bacillus subtilis host cells was blocked with 6-(p-hydroxyphenylazo)-uracil (HPUra). The time of initiation of phi29 DNA replication was not affected by HPUra, and normal quantities of viable phage were produced in the presence of the inhibitor. Studies with conditional lethal mutants of phage phi29 demonstrated the usefulness of HPUra for detection of viral-specific DNA production.  相似文献   

5.
Bacteriophage λ replication complex, containing the phage-encoded O initiator protein protected from proteases by other elements of this complex, is a stable structure that can be inherited by one of the two daughter λ DNA copies after a replication round in Escherichia coli. In normal growth conditions in bacteria bearing a plasmid derived from bacteriophage λ, such a complex may be stable for many cell generations. However, it was found that this stable structure is disassembled under certain conditions, namely, after heat shock. Therefore, we asked whether other environmental stresses may cause disassembly of the λ replication complex. We found that UV irradiation of the host cells prevented formation of the stable λ replication complex (though not preventing phage replication), while the same UV doses did not affect the stability of the replication complex assembled prior to the irradiation. These results indicate that the stable λ replication complex, although sensitive to heat shock, is resistant to some other environmental stresses and that formation of at least two types of λ replication complexes is possible. Both stable and unstable λ replication complexes are functional because replication of λ DNA under conditions preventing formation of the stable complex proceeds efficiently. Received: 18 January 2000 / Accepted: 2 March 2000  相似文献   

6.
Markers in gene L, which maps at the right end of the vegetative and prophage maps, are rescued at a strongly reduced frequency from mature 105 deoxyribonucleic acid (DNA) by superinfecting phage but at high frequency from vegetative and prophage DNA. It is suggested that the ends of mature DNA are degraded when DNA is taken up by competent cells.  相似文献   

7.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

8.
Deoxyribonucleic acid (DNA) synthesis in bacteriophage phi29-infected Bacillus amyloliquefaciens was studied at 37 and 45 C. Infectious intracellular particles appear at the same time at both temperatures, but the average burst size is reduced 45 to 50% at 45 C. There is a transient inhibition of cellular mass increase at 45 C which is not observed at the lower temperature. In addition, the rate of host DNA synthesis is reduced and the onset of viral-specific DNA replication is delayed for 6 to 9 min at 45 C. These findings allowed us to screen phage phi29 mutants which are sensitive to growth at 45 C for their ability to synthesize phi29 DNA in the absence of host DNA replication. We obtained mutants which make no viral DNA, reduced levels of DNA, or normal quantities of DNA under nonpermissive conditions. Pulse-labeled viral DNA which sediments more rapidly than mature phi29 DNA molecules was observed after gentle cell lysis and zone sedimentation. This DNA is not a precursor of normally sedimenting phi29 DNA and apparently consists of mature phi29 DNA molecules aggregated with large pieces of bacterial DNA.  相似文献   

9.
The restriction enzyme from Hemophilus influenzae, endonuclease R, cleaves phiX174 replicative-form deoxyribonucleic acid (DNA) into at least 13 specific limit fragments. The molecular weights of 12 of the fragments have been estimated by gel electrophoresis and electron microscopy. Using the genetic assay for small fragments of phiX DNA, we have shown that we can salvage markers from the endonuclease R phiX-RF fragments.  相似文献   

10.
Bacteriophage crosses using density-labeled parents have been carried out under conditions restricting DNA synthesis. The parental material and genetic contributions to progeny manifesting recombination within a genetic interval sufficiently short to exhibit high negative interference have been examined. The unreplicated products of recombination isolated as phage particles appear to contain long continuous heteroduplex regions which are heterozygous for the closely linked markers. Recombination between closely linked markers seems to be the consequence of the removal of base-pair mismatches that are present within the heteroduplex regions. This localized reduction of heterozygosity within the heteroduplex regions that join the parental components of recombinant DNA molecules can account for high negative interference.  相似文献   

11.
The double-stranded replicative form deoxyribonucleic acid (RF-DNA) of bacteriophage phiX174 was fragmented by pancreatic deoxyribonuclease, and the complementary strand fragments were then annealed to intact viral single strands. When such complexes infected Escherichia coli spheroplasts, some of the progeny virus bore genetic markers derived from the RF-DNA fragments. In this way, genetic markers have been salvaged from DNA fragments less than 50 nucleotides in length. This method is potentially useful as a specific assay to aid in the purification of genetically defined DNA fragments and also as a mechanism for the incorporation of small chemically synthesized DNA sequences into viral genomes.  相似文献   

12.
The structure of Bacillus subtilis bacteriophage phi25 and phi25 deoxyribonucleic acid (DNA) were studied by electron microscopy. The head of phi25 is a regular polyhedron measuring 75 nm in diameter. The uncontracted tail of phi25 is 130 nm in length and includes a large, complex tail plate. Phage phi25 DNA is double-stranded and has a molecular weight of approximately 100 million as determined by electron microscopic length measurements and analytical band sedimentation in CsCl. The complementary strands of phi25 DNA contain numerous random interruptions. Chemical analysis of phi25 DNA demonstrated that 5-hydroxymethyluracil replaces thymine and that the DNA has a mole per cent (guanine plus cytosine) of 42.  相似文献   

13.
Gene Regulation in N Mutants of Bacteriophage λ   总被引:1,自引:1,他引:1  
Mutants (N(-)nin) of bacteriophage lambda in which the N gene product is not required for growth on wild-type Escherichia coli do not plate on recA bacterial mutants. Secondary mutants, selected for growth on recA, lie within the immunity region to the right of gene cI and appear identical to the cro mutants of Eisen et al. In an N(+) phage, a cro mutation causes enhanced and prolonged production of lambda exonuclease. N(-)cro phages make no detectable exonuclease, but show an increased rate of specific excision from lysogens and are excluded by P2 prophage. These properties, together with the ability to plate on recA, suggest that N(-)cro phages express genes to the left of N at a rate that is very low but higher than that for N(-)cro(+) phages. N(-)nin phages can integrate at the normal site on the bacterial chromosome, but specific excision from lysogens is immeasurably low.  相似文献   

14.
Phenol-extracted, infectious deoxyribonucleic acid (DNA) species from phi105 phage particles, from phi105 lysogenic bacteria, and from induced phi105 lysogenic bacteria were sedimented in sucrose gradients. Infectious DNA from phi105 particles sedimented like the bulk of mature phage DNA in neutral sucrose. Infectivity of prophage DNA was associated with fast-sedimenting material of heterogenous size. Infectious vegetative phage DNA sedimented somewhat faster than mature phage DNA; it was rapidly converted to a poorly infectious form during the infection.  相似文献   

15.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

16.
It is shown that the individual strands of bacteriophage Tphi3 DNA are intact and that heat-denatured Tphi3 DNA forms a bimodal distribution in a neutral CsCl density gradient.  相似文献   

17.
Four types of phiX-infected cells of Escherichia coli CR, a thymine-requiring strain of E. coli C, were prepared in which the parental replicative-form deoxyribonucleic acid (RF DNA) was labeled with same specific amounts of bromouracil in (i) both strands, (ii) only the infecting viral strand, (iii) only the complementary strand, and (iv) neither strand. The sensitivity of each type of infected cell toward irradiation by ultraviolet light, visible light, and X rays was measured. The results indicate that a certain amount of radiation damage in the infecting viral strand of the parental RF was more inhibitory to the production of progeny phage than when the damage was in the complementary strand. Similar conclusions were also drawn from "suicide" experiments of the phage-infected complexes containing (32)P of the same specific activity on either strand of the parental RF DNA. The results suggest that the beta decay occurring in the infecting viral strand was more effective in inactivating the plaque-forming ability of the complex.  相似文献   

18.
The attachment site (attlambda) of bacteriophage lambda was examined in wild strains of Escherichia coli. Although the att region is non-coding, the DNA sequence was invariant in the 13 strains examined. Two other non-coding regions showed nine changes, all associated with a single strain. In four of 33 strains, sequences were inserted in or near the attlambda site and in two of these the insert was related to lambda. Among strains that can be lysogenized by lambda, integration was via the attlambda site in all cases. Some resistant strains can be lysogenized, and these have been termed "lenient." Most of these fail to give normal phage yield after induction. In some cases rare lysogens have been formed in cells that belong to a mutant subpopulation.  相似文献   

19.
David Henderson  Jon Weil 《Genetics》1975,79(2):143-174
We have isolated a new class of deletion mutants of phage lambda that extend from the prophage attachment site, att, into the gam and cIII genes. In this respect they are similar to certain of the λpbio transducing phage, but they differ in having a low burst size and in forming minute plaques. Lytically grown stocks of the deletions contain a variable proportion of phage that produce large plaques. These have been shown to carry an additional point mutation. Similar mutations, called chi, have been described by Lam et al. (1974), who showed that they result in a hot-spot for recombination produced by the host recombination system (Rec). We show that chi mutations can occur at several sites in the lambda genome and produce a Rec-dependent increase in the burst size of the one deletion tested.—In addition to reducing burst size, the one deletion tested reduces synthesis of DNA and endolysin but increases production of serum blocking protein. A chi mutation partially restores DNA synthesis and endolysin production and reduces serum blocking protein to normal levels. Our results are consistent with the hypothesis put forward by Lam et al., that chi enhances the frequency of Rec-promoted recombination, which provides the only pathway for production of maturable DNA in a red- gam- infection. The mechanism of the differential effect on protein production is, however, unclear.—Chi mutations are found to occur in DNA other than that of λ. We show that, as has been suggested elsewhere (McMilin, Stahl and Stahl 1974), the λpbio transducing phages carry a chi mutation within the E. coli DNA substitution. A chi mutation also arose in a new substitution of unknown origin isolated in the course of this work.  相似文献   

20.
Impeded DNA replication or a deficiency of its control may critically threaten the genetic information of cells, possibly resulting in genome alterations, such as gross chromosomal translocations, microsatellite instabilities, or increased rates of homologous recombination (HR). We examined an Arabidopsis thaliana line derived from a forward genetic screen, which exhibits an elevated frequency of somatic HR. These HR events originate from replication stress in endoreduplicating cells caused by reduced expression of the gene coding for the catalytic subunit of the DNA polymerase δ (POLδ1). The analysis of recombination types induced by diverse alleles of polδ1 and by replication inhibitors allows the conclusion that two not mutually exclusive mechanisms lead to the generation of recombinogenic breaks at replication forks. In plants with weak polδ1 alleles, we observe genome instabilities predominantly at sites with inverted repeats, suggesting the formation and processing of aberrant secondary DNA structures as a result of the accumulation of unreplicated DNA. Stalled and collapsed replication forks account for the more drastic enhancement of HR in plants with strong polδ1 mutant alleles. Our data suggest that efficient progression of DNA replication, foremost on the lagging strand, relies on the physiological level of the polymerase δ complex and that even a minor disturbance of the replication process critically threatens genomic integrity of Arabidopsis cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号