首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Detecting differentially expressed proteins is a key goal of proteomics. We describe a label-free method, the spectral index, for analyzing relative protein abundance in large-scale data sets derived from biological samples by shotgun proteomics. The spectral index is comprised of two biochemically plausible features: relative protein abundance (assessed by spectral counts) and the number of samples within a group with detectable peptides. We combined the spectral index with permutation analysis to establish confidence intervals for assessing differential protein expression in bronchoalveolar lavage fluid from cystic fibrosis and control subjects. Significant differences in protein abundance determined by the spectral index agreed well with independent biochemical measurements. When used to analyze simulated data sets, the spectral index outperformed four other statistical tests (Student's t-test, G-test, Bayesian t-test, and Significance Analysis of Microarrays) by correctly identifying the largest number of differentially expressed proteins. Correspondence analysis and functional annotation analysis indicated that the spectral index improves the identification of enriched proteins corresponding to clinical phenotypes. The spectral index is easily implemented and statistically robust, and its results are readily interpreted graphically. Therefore, it should be useful for biomarker discovery and comparisons of protein expression between normal and disease states.  相似文献   

2.
Spectral counting has become a commonly used approach for measuring protein abundance in label-free shotgun proteomics. At the same time, the development of data analysis methods has lagged behind. Currently most studies utilizing spectral counts rely on simple data transforms and posthoc corrections of conventional signal-to-noise ratio statistics. However, these adjustments can neither handle the bias toward high abundance proteins nor deal with the drawbacks due to the limited number of replicates. We present a novel statistical framework (QSpec) for the significance analysis of differential expression with extensions to a variety of experimental design factors and adjustments for protein properties. Using synthetic and real experimental data sets, we show that the proposed method outperforms conventional statistical methods that search for differential expression for individual proteins. We illustrate the flexibility of the model by analyzing a data set with a complicated experimental design involving cellular localization and time course.  相似文献   

3.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers.  相似文献   

4.
Mass spectrometry (MS)-based shotgun proteomics allows protein identifications even in complex biological samples. Protein abundances can then be estimated from the counts of tandem MS (MS/MS) spectra attributable to each protein, provided one accounts for differential MS detectability of contributing peptides. We developed a method, APEX, which calculates Absolute Protein EXpression levels based upon learned correction factors, MS/MS spectral counts and each protein's probability of correct identification. This protocol describes APEX-based calculations in three parts. (i) Using training data, peptide sequences and their sequence properties, a model is built to estimate MS detectability (O(i)) for any given protein. (ii) Absolute protein abundances are calculated from spectral counts, identification probabilities and the learned O(i)-values. (iii) Simple statistics allow calculation of differential expression in two distinct biological samples, i.e., measuring relative protein abundances. APEX-based protein abundances span 3-4 orders of magnitude and are applicable to mixtures of 100s to 1,000s of proteins.  相似文献   

5.

Background

Citrus is one of the most important and widely grown commodity fruit crops. In this study a label-free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various metabolic pathways affecting citrus fruit development and quality.

Results

Protein changes in citrus juice sac cells were identified and quantified using label-free shotgun methodologies. Two alternative methods, differential mass-spectrometry (dMS) and spectral counting (SC) were used to analyze protein changes occurring during earlier and late stages of fruit development. Both methods were compared in order to develop a proteomics workflow that could be used in a non-model plant lacking a sequenced genome. In order to resolve the bioinformatics limitations of EST databases from species that lack a full sequenced genome, we established iCitrus. iCitrus is a comprehensive sequence database created by merging three major sources of sequences (HarvEST:citrus, NCBI/citrus/unigenes, NCBI/citrus/proteins) and improving the annotation of existing unigenes. iCitrus provided a useful bioinformatics tool for the high-throughput identification of citrus proteins. We have identified approximately 1500 citrus proteins expressed in fruit juice sac cells and quantified the changes of their expression during fruit development. Our results showed that both dMS and SC provided significant information on protein changes, with dMS providing a higher accuracy.

Conclusion

Our data supports the notion of the complementary use of dMS and SC for label-free comparative proteomics, broadening the identification spectrum and strengthening the identification of trends in protein expression changes during the particular processes being compared.  相似文献   

6.
The enormous dynamic range of human bodily fluid proteomes poses a significant challenge for current MS-based proteomics technologies as it makes it especially difficult to detect low abundance proteins in human biofluids such as blood plasma, which is an essential aspect for successful biomarker discovery efforts. Here we present a novel tandem IgY12-SuperMix immunoaffinity separation system for enhanced detection of low abundance proteins in human plasma. The tandem IgY12-SuperMix system separates approximately 60 abundant proteins from the low abundance proteins in plasma, allowing for significant enrichment of low abundance plasma proteins in the SuperMix flow-through fraction. High reproducibility of the tandem separations was observed in terms of both sample processing recovery and LC-MS/MS identification results based on spectral count data. The ability to quantitatively measure differential protein abundances following application of the tandem separations was demonstrated by spiking six non-human standard proteins at three different levels into plasma. A side-by-side comparison between the SuperMix flow-through and IgY12 flow-through samples analyzed by both one- and two-dimensional LC-MS/MS revealed a 60-80% increase in proteome coverage as a result of the SuperMix separations, suggesting significantly enhanced detection of low abundance proteins. A total of 695 plasma proteins were confidently identified in a single analysis (with a minimum of two peptides per protein) by coupling the tandem separation strategy with two-dimensional LC-MS/MS, including 42 proteins with reported normal concentrations of approximately 100 pg/ml to 100 ng/ml. The concentrations of two selected proteins, macrophage colony-stimulating factor 1 and matrix metalloproteinase-8, were independently validated by ELISA as 202 pg/ml and 12.4 ng/ml, respectively. Evaluation of binding efficiency revealed that 45 medium abundance proteins were efficiently captured by the SuperMix column with >90% retention. Taken together, these results illustrate the potential broad utilities of this tandem IgY12-SuperMix strategy for proteomics applications involving human biofluids where effectively addressing the dynamic range challenge of the specimen is imperative.  相似文献   

7.
Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.  相似文献   

8.
A hallmark of neurodegeneration is the aggregation of disease related proteins that are resistant to detergent extraction. In the major pathological subtype of frontotemporal lobar degeneration (FTLD), modified TAR-DNA binding protein 43 (TDP-43), including phosphorylated, ubiquitinated, and proteolytically cleaved forms, is enriched in detergent-insoluble fractions from post-mortem brain tissue. Additional proteins that accumulate in the detergent-insoluble FTLD brain proteome remain largely unknown. In this study, we used proteins from stable isotope-labeled (SILAC) human embryonic kidney 293 cells (HEK293) as internal standards for peptide quantitation across control and FTLD insoluble brain proteomes. Proteins were identified and quantified by liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) and 21 proteins were determined to be enriched in FTLD using SILAC internal standards. In parallel, label-free quantification of only the unlabeled brain derived peptides by spectral counts (SC) and G-test analysis identified additional brain-specific proteins significantly enriched in disease. Several proteins determined to be enriched in FTLD using SILAC internal standards were not considered significant by G-test due to their low total number of SC. However, immunoblotting of FTLD and control samples confirmed enrichment of these proteins, highlighting the utility of SILAC internal standard to quantify low-abundance proteins in brain. Of these, the RNA binding protein PTB-associated splicing factor (PSF) was further characterized because of structural and functional similarities to TDP-43. Full-length PSF and shorter molecular weight fragments, likely resulting from proteolytic cleavage, were enriched in FTLD cases. Immunohistochemical analysis of PSF revealed predominately nuclear localization in control and FTLD brain tissue and was not associated with phosphorylated pathologic TDP-43 neuronal inclusions. However, in a subset of FTLD cases, PSF was aberrantly localized to the cytoplasm of oligodendrocytes. These data raise the possibility that PSF directed RNA processes in oligodendrocytes are altered in neurodegenerative disease.  相似文献   

9.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics provides a wealth of information about proteins present in biological samples. In bottom-up LC-MS/MS-based proteomics, proteins are enzymatically digested into peptides prior to query by LC-MS/MS. Thus, the information directly available from the LC-MS/MS data is at the peptide level. If a protein-level analysis is desired, the peptide-level information must be rolled up into protein-level information. We propose a principal component analysis-based statistical method, ProPCA, for efficiently estimating relative protein abundance from bottom-up label-free LC-MS/MS data that incorporates both spectral count information and LC-MS peptide ion peak attributes, such as peak area, volume, or height. ProPCA may be used effectively with a variety of quantification platforms and is easily implemented. We show that ProPCA outperformed existing quantitative methods for peptide-protein roll-up, including spectral counting methods and other methods for combining LC-MS peptide peak attributes. The performance of ProPCA was validated using a data set derived from the LC-MS/MS analysis of a mixture of protein standards (the UPS2 proteomic dynamic range standard introduced by The Association of Biomolecular Resource Facilities Proteomics Standards Research Group in 2006). Finally, we applied ProPCA to a comparative LC-MS/MS analysis of digested total cell lysates prepared for LC-MS/MS analysis by alternative lysis methods and show that ProPCA identified more differentially abundant proteins than competing methods.One of the fundamental goals of proteomics methods for the biological sciences is to identify and quantify all proteins present in a sample. LC-MS/MS-based proteomics methodologies offer a promising approach to this problem (13). These methodologies allow for the acquisition of a vast amount of information about the proteins present in a sample. However, extracting reliable protein abundance information from LC-MS/MS data remains challenging. In this work, we were primarily concerned with the analysis of data acquired using bottom-up label-free LC-MS/MS-based proteomics techniques where “bottom-up” refers to the fact that proteins are enzymatically digested into peptides prior to query by the LC-MS/MS instrument platform (4), and “label-free” indicates that analyses are performed without the aid of stable isotope labels. One challenge inherent in the bottom-up approach to proteomics is that information directly available from the LC-MS/MS data is at the peptide level. When a protein-level analysis is desired, as is often the case with discovery-driven LC-MS research, peptide-level information must be rolled up into protein-level information.Spectral counting (510) is a straightforward and widely used example of peptide-protein roll-up for LC-MS/MS data. Information experimentally acquired in single stage (MS) and tandem (MS/MS) spectra may lead to the assignment of MS/MS spectra to peptide sequences in a database-driven or database-free manner using various peptide identification software platforms (SEQUEST (11) and Mascot (12), for instance); the identified peptide sequences correspond, in turn, to proteins. In principle, the number of tandem spectra matched to peptides corresponding to a certain protein, the spectral count (SC),1 is positively associated with the abundance of a protein (5). In spectral counting techniques, raw or normalized SCs are used as a surrogate for protein abundance. Spectral counting methods have been moderately successful in quantifying protein abundance and identifying significant proteins in various settings. However, SC-based methods do not make full use of information available from peaks in the LC-MS domain, and this surely leads to loss of efficiency.Peaks in the LC-MS domain corresponding to peptide ion species are highly sensitive to differences in protein abundance (13, 14). Identifying LC-MS peaks that correspond to detected peptides and measuring quantitative attributes of these peaks (such as height, area, or volume) offers a promising alternative to spectral counting methods. These methods have become especially popular in applications using stable isotope labeling (15). However, challenges remain, especially in the label-free analysis of complex proteomics samples where complications in peak detection, alignment, and integration are a significant obstacle. In practice, alignment, identification, and quantification of LC-MS peptide peak attributes (PPAs) may be accomplished using recently developed peak matching platforms (1618). A highly sensitive indicator of protein abundance may be obtained by rolling up PPA measurements into protein-level information (16, 19, 20). Existing peptide-protein roll-up procedures based on PPAs typically involve taking the mean of (possibly normalized) PPA measurements over all peptides corresponding to a protein to obtain a protein-level estimate of abundance. Despite the promise of PPA-based procedures for protein quantification, the performance of PPA-based methods may vary widely depending on the particular roll-up procedure used; furthermore, PPA-based procedures are limited by difficulties in accurately identifying and measuring peptide peak attributes. These two issues are related as the latter issue affects the robustness of PPA-based roll-up methods. Indeed, existing peak matching and quantification platforms tend to result in PPA measurement data sets with substantial missingness (16, 19, 21), especially when working with very complex samples where substantial dynamic ranges and ion suppression are difficulties that must be overcome. Missingness may, in turn, lead to instability in protein-level abundance estimates. A good peptide-protein roll-up procedure that utilizes PPAs should account for this missingness and the resulting instability in a principled way. However, even in the absence of missingness, there is no consensus in the existing literature on peptide-protein roll-up for PPA measurements.In this work, we propose ProPCA, a peptide-protein roll-up method for efficiently extracting protein abundance information from bottom-up label-free LC-MS/MS data. ProPCA is an easily implemented, unsupervised method that is related to principle component analysis (PCA) (22). ProPCA optimally combines SC and PPA data to obtain estimates of relative protein abundance. ProPCA addresses missingness in PPA measurement data in a unified way while capitalizing on strengths of both SCs and PPA-based roll-up methods. In particular, ProPCA adapts to the quality of the available PPA measurement data. If the PPA measurement data are poor and, in the extreme case, no PPA measurements are available, then ProPCA is equivalent to spectral counting. On the other hand, if there is no missingness in the PPA measurement data set, then the ProPCA estimate is a weighted mean of PPA measurements and spectral counts where the weights are chosen to reflect the ability of spectral counts and each peptide to predict protein abundance.Below, we assess the performance of ProPCA using a data set obtained from the LC-MS/MS analysis of protein standards (UPS2 proteomic dynamic range standard set2 manufactured by Sigma-Aldrich) and show that ProPCA outperformed other existing roll-up methods by multiple metrics. The applicability of ProPCA is not limited by the quantification platform used to obtain SCs and PPA measurements. To demonstrate this, we show that ProPCA continued to perform well when used with an alternative quantification platform. Finally, we applied ProPCA to a comparative LC-MS/MS analysis of digested total human hepatocellular carcinoma (HepG2) cell lysates prepared for LC-MS/MS analysis by alternative lysis methods. We show that ProPCA identified more differentially abundant proteins than competing methods.  相似文献   

10.
We present a statistical method SAINT-MS1 for scoring protein-protein interactions based on the label-free MS1 intensity data from affinity purification-mass spectrometry (AP-MS) experiments. The method is an extension of Significance Analysis of INTeractome (SAINT), a model-based method previously developed for spectral count data. We reformulated the statistical model for log-transformed intensity data, including adequate treatment of missing observations, that is, interactions identified in some but not all replicate purifications. We demonstrate the performance of SAINT-MS1 using two recently published data sets: a small LTQ-Orbitrap data set with three replicate purifications of single human bait protein and control purifications and a larger drosophila data set targeting insulin receptor/target of rapamycin signaling pathway generated using an LTQ-FT instrument. Using the drosophila data set, we also compare and discuss the performance of SAINT analysis based on spectral count and MS1 intensity data in terms of the recovery of orthologous and literature-curated interactions. Given rapid advances in high mass accuracy instrumentation and intensity-based label-free quantification software, we expect that SAINT-MS1 will become a useful tool allowing improved detection of protein interactions in label-free AP-MS data, especially in the low abundance range.  相似文献   

11.
12.
Membrane protein analyses have been notoriously difficult due to hydrophobicity and the general low abundance of these proteins compared to their soluble cytosolic counterparts. Shotgun proteomics has become the preferred method for analyses of membrane proteins, in particular the recent development of peptide immobilized pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two-dimensional shotgun proteomics. Recently, peptide IPG-IEF has been shown to be a valuable shotgun proteomics technique through the use of acidic narrow range IPG strips, which demonstrated that small acidic p I increments are rich in peptides. In this study, we assess the utility of both broad range (BR) (p I 3-10) and narrow range (NR) (p I 3.4-4.9) IPG strips for rat liver membrane protein analyses. Furthermore, the use of these IPG strips was evaluated using label-free quantitation to demonstrate that the identification of a subset of proteins can be improved using NR IPG strips. NR IPG strips provided 2603 protein assignments on average (with 826 integral membrane proteins (IMPs)) compared to BR IPG strips, which provided 2021 protein assignments on average (with 712 IMPs). Nonredundant protein analysis demonstrated that in total from all experiments, 4195 proteins (with 1301 IMPs) could be identified with 1428 of these proteins unique to NR IPG strips with only 636 from BR IPG strips. With the use of label-free quantitation methods, 1659 proteins were used for quantitative comparison of which 319 demonstrated statistically significant increases in normalized spectral abundance factors (NSAF) in NR IPG strips compared to 364 in BR IPG strips. In particular, a selection of six highly hydrophobic transmembrane proteins was observed to increase in NSAF using NR IPG strips. These results provide evidence for the use of alternative pH gradients in combination to improve the shotgun proteomic analysis of the membrane proteome.  相似文献   

13.
Worker honeybee brain proteome   总被引:1,自引:0,他引:1  
A large-scale mapping of the worker honeybee brain proteome was achieved by MudPIT. We identified 2742 proteins from forager and nurse honeybee brain samples; 17% of the total proteins were found to be differentially expressed by spectral count sampling statistics and a G-test. Sequences were compared with the EuKaryotic Orthologous Groups (KOG) catalog set using BLASTX and then categorized into the major KOG categories of most similar sequences. According to this categorization, nurse brain showed increased expression of proteins implicated in translation, ribosomal structure, and biogenesis (14.5%) compared with forager (1.8%). Experienced foragers overexpressed proteins involved in energy production and conversion, showing an extensive difference in this set of proteins (17%) in relation to the nurse subcaste (0.6%). Examples of proteins selectively expressed in each subcaste were analyzed. A comparison between these MudPIT experiments and previous 2-DE experiments revealed nine coincident proteins differentially expressed in both methodologies.  相似文献   

14.
The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports.  相似文献   

15.
We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.  相似文献   

16.

Background  

A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu et al. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen et al. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired.  相似文献   

17.
18.
19.
Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is commonly used to analyze the protein content of biological samples in large scale studies, enabling quantitation and identification of proteins and peptides using a wide range of experimental protocols, algorithms, and statistical models to analyze the data. Currently it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists for peptide identification algorithms but data that represents a ground truth for the evaluation of LC-MS data is limited. Hence there have been attempts to simulate such data in a controlled fashion to evaluate and compare algorithms. We present MSSimulator, a simulation software for LC-MS and LC-MS/MS experiments. Starting from a list of proteins from a FASTA file, the simulation will perform in-silico digestion, retention time prediction, ionization filtering, and raw signal simulation (including MS/MS), while providing many options to change the properties of the resulting data like elution profile shape, resolution and sampling rate. Several protocols for SILAC, iTRAQ or MS(E) are available, in addition to the usual label-free approach, making MSSimulator the most comprehensive simulator for LC-MS and LC-MS/MS data.  相似文献   

20.
Protein abundance changes during disease or experimental perturbation are increasingly analyzed by label-free LC/MS approaches. Here we demonstrate the use of LC/MALDI MS for label-free detection of protein expression differences using Escherichia coli cultures grown on arabinose, fructose or glucose as a carbon source. The advantages of MALDI, such as detection of only singly charged ions, and MALDI plate archiving to facilitate retrospective MS/MS data collection are illustrated. MALDI spectra from RP chromatography of tryptic digests of the E. coli lysates were aligned and quantitated using the Rosetta Elucidator system. Approximately 5000 peptide signals were detected in all LC/MALDI runs spanning over 3 orders of magnitude of signal intensity. The average coefficients of variation for all signals across the entire intensity range in all technical replicates were found to be <25%. Pearson correlation coefficients from 0.93 to 0.98 for pairwise comparisons illustrate high replicate reproducibility. Expression differences determined by Analysis of Variance highlighted over 500 isotope clusters ( p < 0.01), which represented candidates for targeted peptide identification using MS/MS. Biologically interpretable protein identifications that could be derived underpin the general utility of this label-free LC/MALDI strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号