首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Commercially pure (CP) titanium and Ti 6Al 4V alloy were sputtered onto polycarbonate plastic implants to analyse hard tissue reactions to the two metals. The implants were inserted in the tibial methaphyses of five rabbits. Three months later they were removed and processed for light microscopy (LM) and transmission electron microscopy (TEM) investigations. At the LM level, disordered woven bone was seen in the interface zone of Ti 6Al 4V, whereas organized bone was observed in direct contact with the CP titanium implants. TEM examination of Ti 6Al 4V sections revealed a 500–1000 Å thick collagen-free proeoglycan layer compared to 200–400 Å for CP titanium. A surface analysis test was performed to compare the magnetron sputtered film with bulk Ti 6Al 4V alloy. This test revealed no major differences between the experimental implant and the bulk alloy. More natural-like tissue reactions were observed to CP titanium than to Ti 6Al 4V alloy.  相似文献   

2.
Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a series of daptomycin conjugates for bonding to the surface of 1.0 cm2 Ti6Al4V foils through bisphosphonate groups, reaching a maximum yield of 180 pmol/cm2. Daptomycin-bonded foils killed 53 ± 5% of a high challenge dose of 3 × 10? cfu Staphylococcus aureus ATCC 29213.  相似文献   

3.
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.  相似文献   

4.

Objective

This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time.

Materials and Methods

CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples.

Results

The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped.

Conclusions

Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility.  相似文献   

5.
Titanium alloy is one of the best materials for biomedical applications due to its superior biocompatibility, outstanding corrosion resistance, and low elastic modulus. However, the friction and wear behaviors of titanium alloys were sensitive to the environment including lubrication. In order to clarify the wear mechanism of titanium alloy under different lubrications including deionized water, physiological saline and bovine serum, the friction and wear tests were performed between Ti6Al4V plates and Si3N4 ball on a universal multi-functional tester. The friction and the wear rate of titanium alloy were measured under dry friction and three different lubrication conditions. The worn surfaces were examined by scanning electron microscopy. The results revealed that under the dry friction, the wear resistance of titanium alloy was the worst since the wear mechanism was mainly the combination of abrasive wear and oxidation wear. It was also found that Ti6Al4V alloy had low friction coefficient and wear rate under three lubrication conditions, and its wear mechanism was adhesive wear.  相似文献   

6.
Mechanical surface treatments have a long history in traditional engineering disciplines, such as the automotive or aerospace industries. Today, they are widely applied to metal components to increase the mechanical performance of these. However, their application in the medical field is rather rare. The present study aims to compare the potential of relevant mechanical surface treatments on the high cycle fatigue (R = 0.1 for a maximum of 10 million cycles) performance of a Ti6Al4V standard alloy for orthopedic, spinal, dental and trauma surgical implants: shot peening, deep rolling, ultrasonic shot peening and laser shock peening. Hour-glass shaped Ti6Al4V specimens were treated and analyzed with regard to the material’s microstructure, microhardness, residual stress depth profiles and the mechanical behavior during fatigue testing. All treatments introduced substantial compressive residual stresses and exhibited considerable potential for increasing fatigue performance from 10% to 17.2% after laser shock peening compared to non-treated samples. It is assumed that final mechanical surface treatments may also increase fretting wear resistance in the modular connection of total hip and knee replacements.  相似文献   

7.
The biocompatibility of metal implants is related to their surface electrochemical characterizations. The in situ growing process of osteoblast-like U-2 OS cells on polished Ti and Ti-6Al-4V alloy during 72h incubation was monitored using the electrochemical impedance spectroscopy (EIS) measurement technique. The results showed that the presence of cells on metals led to an increase in the impedance and polarization resistance (R(p)) of metals. The impedance and R(p) increased as the cells grew (i.e., from adhesion, spreading to proliferation period). A trace amount of V element released from Ti-6Al-4V alloy led to a lower R(p) with respect to Ti metal during cell culture. In this study, a satisfactory equivalent circuit simulating the electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with cells was proposed. The EIS measurement technique was applied successfully to monitor the in situ growing process of U-2 OS cells on Ti and Ti-6Al-4V alloy.  相似文献   

8.
doi: 10.1111/j.1741‐2358.2011.00598.x
Fatigue strength: effect of welding type and joint design executed in Ti‐6Al‐4V structures Background: This study evaluated the fatigue strength of Ti‐6Al‐4V‐machined structures submitted to laser (L)‐welding and TIG (TIG)‐welding procedures, varying the joint designs. Materials and methods: Seventy dumbbell rods were machined in Ti‐6Al‐4V alloy with central diameters of 3.5 mm. The specimens were sectioned and welded using TIG or L and three joint designs {‘I’ design, varying welding distances [0.0 mm (I00) or 0.6 mm (I06)], or ‘X’ [X] design}. The combinations of variables created six groups, which, when added to the intact group, made a total of seven groups (n = 10). L was executed as follows: 360 V/8 ms (X) and 390 V/9 ms (I00 and I06), with focus and frequency regulated to zero. TIG was executed using 2:2 (X) and 3:2 (I00 and I06) as welding parameters. Joints were finished, polished and submitted to radiographic examination to be analysed visually for the presence of porosity. The specimens were then subjected to mechanical cyclic tests, and the number of cycles completed until failure was recorded. The fracture surface was examined using a scanning electron microscope. Results: The Kruskal–Wallis and Dunn test (α = 0.05) indicated that the number of cycles resisted for fracture was higher to X for both welding procedures. To L, I06 was as resistant as X. The Mann–Whitney U‐test (α = 0.05) indicated that L joints were more resistant than TIG to I00 and I06. Spearman’s correlation coefficient (α = 0.05) indicated a negative correlation between the number of cycles and presence of porosity. Conclusion: Thus, to weld Ti‐6Al‐4V structures, the best condition is X, independent of the welding method employed.  相似文献   

9.
The biomechanical compatibility of an interspinous device, used for the "dynamic stabilization" of a diseased spinal motion segment, was investigated. The behaviour of an implant made of titanium based alloy (Ti6Al4V) and that of an implant made of a super-elastic alloy (Ni-Ti) have been compared. The assessment of the biomechanical compatibility was achieved by means of the finite element method, in which suitable constitutive laws have been adopted for the annulus fibrosus and for the metal alloys. The model was aimed at simulating the healthy, the nucleotomized and the treated L4-L5 lumbar segment, subjected to compressive force and flexion-extension as well as lateral flexion moments. The computational model has shown that both the implants were able to achieve their main design purpose, which is to diminish the forces acting on the apophyseal joints. Nevertheless, the Ni-Ti implant has shown a more physiological flexural stiffness with respect to the Ti6Al4V implant, which exhibited an excessive stiffness and permanent strains (plastic strains), even under physiological loads. The computational models presented in this paper seems to be a promising tool able to predict the effectiveness of a biomedical device and to select the materials to be used for the implant manufacturing, within an engineering approach to the clinical problem of the spinal diseases.  相似文献   

10.
The effect of titanium-based PVD coatings and a titanium alloy on the proliferation and differentiation of osteoblasts was investigated using a standardised cell culture system. Human fetal osteoblasts (hFOB 1.19) were cultured on titanium-niobium-nitride ([Ti,Nb]N), titanium-niobium-oxy-nitride coatings ([Ti,Nb]ON) and titanium-aluminium-vanadium alloy (Ti6Al4V) for 17 days. Cell culture polystyrene (PS) was used as reference. For the assessment of proliferation, the numbers and viability of the cells were determined, while alkaline phosphatase activity, collagen I and osteocalcin synthesis served as differentiation parameters. On the basis of the cell culture experiments, a cytotoxic effect of the materials can be excluded. In comparison with the other test surfaces, [Ti,Nb]N showed greater cell proliferation. The [Ti,Nb]N coating was associated with the highest level of osteocalcin production, while all other differentiation parameters were identical on all three surfaces. The test system described reveals the influence of PVD coatings on the osteoblast differentiation cycle. The higher oxygen content of the [Ti,Nb]ON surface does not appear to have any positive impact on cell proliferation. The excellent biocompatibility of the PVD coatings is confirmed by in vivo findings. The possible use of these materials in the fields of osteosynthesis and articular surfaces is still under discussion.  相似文献   

11.
H. Felgueiras  V. Migonney 《IRBM》2013,34(6):371-375
The application of the titanium alloy Ti6Al4V in the biomedical field is not new. It has been used for more than 50 years with excellent results. Nonetheless, the interactions developed at the interface biomaterial-cell still present some challenges during implantation. The use of bioactive polymers bearing anionic groups in combination with titanium-based materials has been shown to be an excellent solution. In this study, we demonstrated the impact of the poly(sodium styrene sulfonate) (or poly(NaSS)) chemical grafting on Ti6Al4V surfaces by following the attachment strength of the osteoblastic cells MC3T3-E1, in their initial moments of interaction, and by afterward examine their differentiation. The grafting process was proved to be successful by measuring the poly(NaSS) concentration on the Ti6Al4V using the toluidine blue colorimetric method. The cells morphology was observed without changes being detected between substrates. On the other hand, the presence of the sulfonate groups enhanced the strength of the cellular bond, enabling the MC3T3-E1 to resist to shear stress of 10 dyn/cm2 of magnitude. The poly(NaSS) was found to enhance the osteoblastic cells differentiation by increasing the alkaline phosphatase concentration and, consequently, the cells metabolic activity. This in vitro study proved once again the poly(NaSS) to be suitable for biomedical applications.  相似文献   

12.

Background

High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation.

Methods

In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating.

Results

The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation.

Conclusions

This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.  相似文献   

13.
The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.  相似文献   

14.
This study describes the effect of the presence of cobalt-chromium-molybdenum (CoCrMo) and titanium-6aluminium-4vanadium (Ti6AL4V) disc samples on the CD3-mediated in vitro response of human peripheral blood T lymphocyt es. Lymphocyte proliferation in the presence and absence of these metal alloy discs was measured by [3H]thymidine incorporation. Inhibition of lymphocyte proliferation was observed in the presence of CoCrMo disc samples. In contrast, the presence of the Ti6AL4V metal alloy discs had no effect on T cell proliferation. Ultrastructural studies using scanning electron microscopy revealed that the differences in the number of blast cells on uncoated CoCrMo and Ti6AL4V discs from a 4 day culture were consistent with the results observed in the proliferation experiments, i.e. fewer blast cells were seen on the CoCrMo than on the Ti6AL4V discs. In addition, a quantitative analysis of trace elements using total reflection X-ray fluorescence spectrometry in supernatants from 68 h in vitro cultures containing Ti6AL4V or CoCrMo disc samples was performed, revealing differences in the relative metal concentrations in the culture conditions tested. These differences point to the presence of cobalt in the supernatants as a possible determining factor of the inhibition observed. Because cell viability did not appear to change, a more complex mechanism involving the interaction of metals with T lymphocytes may account for the results obtained.  相似文献   

15.
This work investigates the role of the surface roughness of Ti6Al4V on the cell morphology, proliferation and adhesion, and in particular on the variation of the expression of cell adhesion proteins. Standardised test samples with five different surface preparations are used: sandblasted, 80, 1200, and 4000 grade polished, mirror polished. Surface roughness is analysed by Scanning Electron Microscopy and LASER Confocal Microscopy. Cell culture experiments are performed with MC3T3-E1 mouse osteoblasts after 3 days culture: proliferation rate, morphology and adhesion are assessed. The variations of expression of cell adhesion proteins are evidenced by indirect immune fluorescence method: actin from the cytoskeleton, vinculin from the focal adhesion complex, fibronectin and collagen I from the extracellular matrix. The results reveal a clear influence of surface roughness of Ti6Al4V on cell proliferation, morphology and adhesion. A significant correlation is established between surface roughness and cell growth. More the surface is smooth more the osteoblasts proliferate and appear spread out on the test samples. In addition, the expression of adhesion proteins varies with respect to the surface roughness. These results indicate a direct relationship between the decrease of cell adhesion and the increase of cell proliferation on mirror polished materials.  相似文献   

16.
钛合金和钴铬合金表面白色念珠菌粘附的研究   总被引:3,自引:0,他引:3  
目的比较钛合金(Ti-6Al-4V)和钴铬合金(Chromium-Cobaltalloy)表面白色念珠菌粘附能力的大小,研究表面粗糙度与细菌粘附的关系。方法将不同表面粗糙度的钛合金和钴铬合金试件进行白色念珠菌体外粘附试验,采用菌落形成计数法测定试件表面的细菌粘附量。结果各钛合金试件组的细菌粘附量均少于相同表面粗糙度的钴铬合金试件组,两种金属试件表面的细菌粘附量均随表面粗糙度的增大而增加。结论钛合金较钴铬合金更能减少由白色念珠菌引起的义齿性口炎等并发症,同时修复体表面严格的研磨抛光也能有效减少这些并发症。  相似文献   

17.
The reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S., 2004. Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L. (Eds.), Biomaterials in Orthopedics. Marcel Dekker Inc., New York, pp. 41-62]. Nanostructured titanium-based biomaterials with tailored porosity are important for cell-adhesion, viability, differentiation and growth. Newer technologies like foaming or low-density core processing were recently used for the surface modification of titanium alloy implant bodies to stimulate bone in-growth and improve osseointegration and cell-adhesion, which in turn play a key role in the acceptance of the implants. We here report preliminary results concerning the synthesis of mesoporous titanium alloy bodies by spark plasma sintering. Nanocrystalline cp Ti, Ti-6Al-4V, Ti-Al-V-Cr and Ti-Mn-V-Cr-Al alloy powders were prepared by high-energy wet-milling and sintered to either full-density (cp Ti, Ti-Al-V) or uniform porous (Ti-Al-V-Cr, Ti-Mn-V-Cr-Al) bulk specimens by field-assisted spark plasma sintering (FAST/SPS). Cellular interactions with the porous titanium alloy surfaces were tested with osteoblast-like human MG-63 cells. Cell morphology was investigated by scanning electron microscopy (SEM). The SEM analysis results were correlated with the alloy chemistry and the topographic features of the surface, namely porosity and roughness.  相似文献   

18.
目的:探讨微弧氧化(micro-arc oxidation,MAO)后的Zr46(Cu4.5/5.5Ag1/5.5)46Al8(at%)(本文简称Zr-Cu-Al-Ag非晶合金)的细胞相容性。方法:按照国家标准制备300 V、350 V和400 V电压MAO处理的Zr-Cu-Al-Ag非晶合金、铸态Zr-Cu-Al-Ag非晶合金以及TI6Al4V合金试件的浸提液用于培养L929细胞,阴性组的L929细胞用含10%小牛血清的DMEM溶液培养,阳性组的L929细胞用含64 g/L苯酚和10%小牛血清的DMEM溶液培养,通过四唑盐(MTT)比色法分析试件的细胞相容性。结果:MAO处理的Zr-Cu-Al-Ag非晶合金细胞毒性评级为0,其浸提液中的L929细胞状态良好,细胞增殖曲线呈上升趋势,三个MAO组的吸光度值高于铸态Zr-Cu-Al-Ag非晶合金组、TI6Al4V合金组和阳性对照组(P0.05),但与阴性对照组无明显差别(P0.05)。结论:MAO提高了Zr-Cu-Al-Ag非晶合金表面的细胞相容性。  相似文献   

19.
The long-term stability and success of orthopedic implants depend on the osseointegration process, which is strongly influenced by the biomaterial surface. A promising approach to enhance implant integration involves the modification of the surface of the implant by means of polymers that mimic the natural components of the extracellular matrix, for example, polysaccharides. In this study, methacrylate thermosets (bisphenol A glycidylmethacrylate/triethyleneglycol dimethacrylate), a widely used composition for orthopedic and dental applications, have been coated by electrostatic deposition of a bioactive chitosan-derivative. This polysaccharide was shown to induce osteoblasts aggregation in vitro, to stimulate cell proliferation and to enhance alkaline phosphatase activity. The coating deposition was studied by analyzing the effect of pH and ionic strength on the grafting of the polysaccharide. Contact angle studies show that the functionalized material displays a higher hydrophilic character owing to the increase of surface polar groups. The mechanical properties of the coating were evaluated by nanoindentation studies which point to higher values of indentation hardness and modulus (E) of the polysaccharide surface layer, while the influence of cyclic stress on the construct was assessed by fatigue tests. Finally, in vivo tests in minipigs showed that the polysaccharide-based implant showed a good biocompatibility and an ability for osseointegration at least similar to that of the titanium Ti6Al4V alloy with roughened surface.  相似文献   

20.
It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone‐implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium‐phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium‐phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X‐ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium‐and phosphorus‐containing particles on untreated and treated disks that were more numerous on fibronectin‐coated disks. These particles were observed earliest (1 week) on RFGD‐pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin‐coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. J. Cell. Biochem. 114: 1917–1927, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号