首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of cyclopeptide antibiotic gramicidin S on some enzymes and physical state of isolated Micrococcus lysodeikticus membranes is studied. Malate and lactate dehydrogenases were monotonously inhibited under the increase of gramicidin S concentration, while the activity of NADH-dehydrogenase firstly decreased and then reversed to the initial level under further increase of gramicidin S concentration. The oxygen uptake under oxidation of NADH and malate with membranes almost completely inhibited by the antibiotic, while the activity of ascorbate-TMPD-oxidase activity slightly inhibited by the same concentration of gramicidin. The addition of Triton X-100 completely eliminated the inhibitory effect of gramicidin on malate dehydrogenase. The introduction into the membrane of spine probes (2,2,6,6-tetramethyl-4-palmitoylamidopiperidine-1-oxile and 2(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxyazolidinyloxile) revealed that gramicidin caused the condensation of membrane lipid component. It is suggested that ionic interaction of gramicidin S with membrane phospholipids brings to "a freezing" of lipids which is a direct cause of impairing the activity of membrane respiration enzymes and the change of their position in the lipid matrix, thus inhibiting energy-producing processes in cell.  相似文献   

2.
Payne G  Kono Y  Daly JM 《Plant physiology》1980,65(5):785-791
NADH or succinate oxidation and malate oxidation were differentially affected in mitochondria from both susceptible and resistant corn by a purified and chemically characterized preparation of host-specific toxin from Bipolaris (Helminthosporium) maydis, race T. NADH and succinate oxidation by susceptible T corn mitochondria were stimulated 50 to 200% with apparent uncoupling from the cytochrome chain at approximately 10(-9)m toxin (5 to 20 ng/ml). Significant inhibition of malate oxidation was observed at slightly higher toxin concentrations, but oxidation was still coupled to ADP utilization. Inhibition of malate oxidation also was observed in N corn (resistant) and soybean mitochondria at approximately 1,000-fold greater concentrations, but stimulation of NADH and succinate oxidation was not found at any toxin concentration tested.A fully acetylated toxin derivative at approximately 1 microgram per milliliter also caused stimulation of NADH or succinate oxidation in T corn mitochondria, but not those of N corn or soybean mitochondria at 100 micrograms per milliliter. Malate oxidation was inhibited to the same extent by toxin acetate with mitochondria from T corn, N corn, and soybean. The blocking of hydroxyl groups in race T toxin by acetyl functions eliminated selectivity toward malate oxidation only. The data suggest that inhibition of malate oxidation is either a separate or secondary effect of selective action of toxin on T corn mitochondria, perhaps by interference with transport in or out of the matrix. Sensitivity of T, but not N, corn mitochondria to purified toxin decays within minutes after pellets are suspended in aqueous osmotica, with no obvious change in mitochondrial integrity. The action of race T toxin seems to involve a labile process, such as ion gradient(s), or an unstable structural conformation of T corn mitochondria.  相似文献   

3.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

4.
The carbonyl-conjugated pentaenes flavofungin, nigrofungin and flavopentin exhibit considerable lytic activity toward Micrococcus lysodeikticus and Bacillus megaterium protoplasts. The antibiotics at concentrations of 5 to 14 microgram/ml cause lysis of 50% of the protoplasts within 15 min of their incubation. The antibiotics inhibit the activity of NADH oxidase and malate oxidase by 50% in the lysates of Micrococcus lysodeikticus and Bacillus megaterium protoplasts at concentrations of 30 to 50 microgram/ml; preincubation of the lysates with the antibiotics intensify the inhibiting action of the polyenes. Growth of the bacteria is inhibited when the minimal concentration of the polyenes is 75 to 100 microgram/ml. Interaction of the polyenes with bacterial membranes lacking sterols indicates that resistance of at least some bacteria to polyenes is caused by impermeability of the cell wall for these substances rather than by the absence of sterols in the membranes.  相似文献   

5.
After incorporation of phosphatidylcholine (PC) into the protoplast membrane of M. lysodeikticus by protein mediated transfer from PC liposomes, the activity of some membrane bound respiratory chain enzymes was studied. It was found that incorporation of PC decreases the rates of oxidation of exogenous substrates (NADH, malate) but the level of endogenous respiration was not changed. Ferricyanidreductase activity of ghosts of M. lysodeikticus was not dependent upon the PC content of protoplasts. PC containing protoplasts showed a higher osmotic stability than unmodified protoplasts. It is concluded that the incorporation of PC into the protoplasts results in resealing, i. e. in the repair of local defects in the protoplast membrane.  相似文献   

6.
The effects of flavone on the oxidative and phosphorylative properties of plant mitochondria from potato tubers and etiolated mung bean hypocotyls were investigated. Flavone inhibited the state 3 oxidation rates of malate, NADH and, to a lesser extent, succinate but was without effect on the ascorbate-TMPD oxidation rate. The inhibition was the same whether the mitochondria were in state 3 or in an uncoupled state 3. When 100 μM flavone was added during the state 4, the tight coupling of succinate or NADH oxidation was not released. In the electron transfer chain, flavone inhibition appeared to be located in the flavoprotein region. All forms of NADH dehydrogenases seemed to be affected but the greatest inhibition appeared when exogenous NADH was used.  相似文献   

7.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

8.
Chlorpromazine was a potent inhibitor of O2-dependent malate oxidation, but not of H2 oxidation in Azotobacter vinelandii membranes. However, chlorpromazine did not significantly affect the activity of malate reductase or the reduction of cytochromes c and d. In the presence of chlorpromazine, cytochrome o failed to form a complex with CO. The site of action of chlorpromazine seems to be in the cytochromes c to cytochrome o branch, the pathway utilized by malate, succinate and NADH, but not by H2.  相似文献   

9.
Isolated mitochondria were obtained from growing and stored sugar beet (Beta vulgaris L.) taproots. These preparations were used to monitor the mitochondrial matrix volume and malate oxidation after the replacement of sucrose with KCl in the reaction medium. The transfer of mitochondria from sucrose-containing isolation medium to the isoosmotic KCl solution initiated spontaneous or energy-dependent (in the presence of respiratory substrate) swelling whose kinetic parameters (the initial rate and amplitude) were virtually independent of the plant age. At the same time, effects of KCl-induced swelling on oxidative and phosphorylating activities of mitochondria were age-dependent. In mitochondria from growing taproots, K+ ions stimulated nonphosphorylating malate oxidation, thereby decreasing the respiratory control ratio and the ADP/O coefficient. The incubation of mitochondria from stored taproots in KCl solution induced a short-term activation and subsequent progressive inhibition of malate oxidation but did not inhibit the oxidation of exogenous NADH. The inhibition of malate oxidation was not released by adding ADP or uncouplers and was enhanced in the presence of valinomycin. The swelling of mitochondria in KCl solutions did not impair the integrity of mitochondrial membranes and did not preclude stimulation of malate oxidation by exogenous NAD. It is supposed that the KCl-induced inhibition of respiration is related to a large increase in the matrix volume and a drastic decrease in the concentration of a coenzyme NAD. Previous studies with isolated mitochondria from stored taproots showed that the mitochondrial NAD level was a rate-limiting factor of malate oxidation assayed in the sucrose-containing media. A possible role of K+-transporting mechanisms in regulation of mitochondrial matrix volume and metabolic activity of plant mitochondria is discussed.  相似文献   

10.
The glyceollin inhibition of electron transport by isolated soybean and corn mitochondria was similar to that of rotenone, acting at site I between the internal NADH dehydrogenase and coenzyme Q. Coupled state 3 malate oxidation was inhibited by glyceollin and rotenone with apparent Ki values of about 15 and 5 micromolar, respectively. Carbonylcyanide m-chlorophenyl hydrazone uncoupled state 4 malate oxidation was also inhibited by glyceollin and rotenone, but uncoupled succinate and exogenous NADH state 4 oxidation was only slightly inhibited by both compounds. Glyceollin also inhibited ferricyanide reduction with malate as the electron donor, with an apparent Ki of 5.4 micromolar, but failed to inhibit such reduction with succinate or externally added NADH as electron donors. Glyceollin did not inhibit state 4 oxidation of malate, succinate, or exogenous NADH. Glyceollin did not act as a classical uncoupler or as an inhibitor of oxidative phosphorylation.  相似文献   

11.
The possible existence of a malonate-sensitive dicarboxylate-mediated electron shuttle between microsomal NAD-linked fatty acid α-oxidation and the mitochondrial electron transport chain in uncoupled fresh potato slices was investigated. Uncoupled slice respiration is inhibited by benzylmalonate and butylmalonate, inhibitors of dicarboxylate transport into mitochondria. Uncoupled slice respiration is also inhibited by rotenone, an indication of intramitochondrial NADH oxidation. Since fatty acid α-oxidation per se is rotenone insensitive, rotenone and benzylmalonate inhibition of the oxidation of carboxyl-labeled myristate in slices points to a dicarboxylic acid shuttle linking microsomal fatty acid a-oxidation with intramitochondrial NADH dehydrogenase.
Malonute inhibits both respiration and 14CO2, release from carboxyl-labeled myristate in fresh uncoupled slices, as do inhibitors of dicarboxylate transport. Mitochondrial studies show that malonate inhibits malate oxidation but not malate dehydrogenase per se. Furthermore, malonate inhibits malate transport more severely than malate oxidation. Accordingly, mulonate inhibition of uncoupled slice respiration in the absence of tricarboxylic acid cycle activity is attributed to its interference with mitochondrial malate transport, and its consequent curtailment of a putative malate-OAA shuttle linked to cytosolic NAD-mediated fatty acid α-oxidation.  相似文献   

12.
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.  相似文献   

13.
1. The addition of chelators to a suspension of mitochondria in a low-cation medium containing 9-aminoacridine caused a decrease in 9-aminoacridine fluorescence. The chelators removed bivalent cations from the membranes and allowed more 9-aminoacridine to move into the diffuse layer. The relative effect of EGTA and EDTA on the fluorescence suggested that the mitochondria are isolated with about equal amounts of Ca2+ and Mg2+ on the membranes. 2. The removal of the bivalent ions by chelators resulted in the inhibition of NADH oxidation. The inhibition could not be removed by adding sufficient decamethylenebistrimethylammonium ion (DM2+) to screen the fixed charges on the membranes and restore the fluorescence of 9-aminoacridine. This observation suggests that bivalent metal ions have a specific role in the oxidation of NADH. 3. Ca2+ and not Mg2+ reversed the inhibition of NADH oxidation caused by EGTA, whereas both reversed the inhibition caused by EDTA. This suggests that Ca2+ plays a specific role and that Mg2+ reverses the inhibition caused by EDTA by displacing the bound calcium from the chelator. 4. The results are interpreted as showing that Ca2+ plays a specific role in the oxidation of external NADH in addition to its ability to screen electrostatically or bind to the fixed charges associated with the surface of the membrane.  相似文献   

14.
1. After hypotonic treatment spermatozoa have metabolic characteristics of mitochondria isolated from other cells. Ejaculated boar spermatozoa treated in this way can oxidise external NADH via both a lactate-pyruvate shuttle and a malate-aspartate cycle; this oxidation is coupled to the phosphorylation of ADP. 2. The dicarboxylate transport inhibitors butylmalonate, phenylsuccinate and bathophenanthroline sulphonate inhibit NADH oxidation dependent on added malate, glutamate and aspartate. alpha-Cyanocinnamate, a strong inhibitor of pyruvate transport, inhibits lactate-dependent NADH oxidation. 3. NADH oxidation dependent on malate, glutamate and aspartate is inhibited by uncoupling agents, but lactate-dependent NADH oxidation is stimulated. 4. Lactate-dependent NADH oxidation is inhibited by oxamate, an inhibitor of lactate dehydrogenase. Aminooxyacetate, an aminotransferase inhibitor, inhibits glutamate, malate and aspartate-dependent NADH oxidation. 5. Hypotonically-treated spermatozoa retain radioactivity after incubation with L-[U-14C]malate, [1,5-14C]citrate or [2-14C]malonate. Exchanges of retained radioactivity with various substrates indicate that dicarboxylate and tricarboxylate exchange carriers exist in the mitochondrial membrane.  相似文献   

15.
Preparations with a selectively decreased (by 85-90%) content of NADH dehydrogenase were isolated by means of heating treatment of M. lysodeikticus isolated membranes. The degree of the reduction of the NADH dehydrogenase nearest neighbour in the respiration chain of cytochrome b556 in heated membranes is similar to that in intact membranes. It is concluded that cytochrome b556 and (or) NADH dehydrogenase are capable to lateral migration in the membrane of M. lysodeikticus, resulting in the inter-chain electrone transport. A coefficient of their lateral diffusion is calculated (D equals 8-10(-10)-2-10(-9) CM2SEC-1 At 30 degrees C) on the basis of kinetics of cytochrome reduction by NADH dehydrogenase. The electron transport, due to a diffusion of respiration carriers from one assambly to another, proceeds 100 times as slow as the electrone transport in the respiratory chain. The data obtained allow to consider the aggregation of respiration enzymes as a dynamic formation.  相似文献   

16.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

17.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

18.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

19.
The lipids of Micrococcus lysodeikticus membranes were 50%-substituted by phosphatidyl choline using lipid-exchanging proteins isolated from rat liver. The incorporation of phosphatidyl choline into the membrane did not significantly change the malate dehydrogenase activity and the temperature dependence activity in the Arrhenius plots for the enzyme. Gramicidin S--modifier of membrane lipids--had similar effects both on the intact membranes and on the phosphatidyl-enriched membranes. A conclusion is made on structural heterogeneity of the bacterial membrane and on the presence of a boundary lipid fraction, which controls the functioning of malate dehydrogenase and is characterized by a low-rate exchange with other lipids.  相似文献   

20.
The effect of rotenone on respiration in pea cotyledon mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
Respiration utilizing NAD-linked substrates in mitochondria isolated from cotyledons of etiolated peas (Pisum sativum L. var. Homesteader) by sucrose density gradient centrifugation exhibited resistance to rotenone. The inhibited rate of α-ketoglutarate oxidation was equivalent to the recovered rate of malate oxidation. (The recovered rate is the rate following the transient inhibition by rotenone.) The inhibitory effect of rotenone on malate oxidation increased with increasing respiratory control ratios as the mitochondria developed. The cyanide-resistant and rotenone-resistant pathways followed different courses of development as cotyledons aged. The rotenone-resistant pathway transferred reducing equivalents to the cyanide-sensitive pathway. Malic enzyme was found to be inhibited competitively with respect to NAD by rotenone concentrations as low as 1.67 micromolar. In pea cotyledon mitochondria, rotenone was transformed into elliptone. This reduced its inhibitory effect on intact mitochondria. Malate dehydrogenase was not affected by rotenone or elliptone. However, elliptone inhibited malic enzyme to the same extent that rotenone did when NAD was the cofactor. The products of malate oxidation reflected the interaction between malic enzyme and malate dehydrogenase. Rotenone also inhibited the NADH dehydrogenase associated with malate dehydrogenase. Thus, rotenone seemed to exert its inhibitory effect on two enzymes of the electron transport chain of pea cotyledon mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号