首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Labd-7,13-dien-15-ol (1), labd-13-ene-8alpha,15-diol (2), and labd-14-ene-8,13-diol (sclareol) have been found to exhibit cytotoxic and cytostatic effects. Their partitioning into phospholipid bilayers may induce membrane structure modifications, crucial in the development of liposomes. DSC was used to elucidate the profile of modifications induced in DPPC bilayers by incorporating increasing concentrations of the labdanes. Labdanes 1, 2 and sclareol were incorporated into SUV liposomes composed of DPPC their physicochemical stability was monitored (4 degrees C) and was compared to liposomes incorporating cholesterol. All labdanes strongly affect the bilayer organization in a concentration dependent manner in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase, the induction of a lateral phase separation and the possible existence of interdigitated domains in the bilayer. The physicochemical stability of liposomes was strongly influenced by the chemical features of the labdanes. The liposomal preparations were found to retain their stability at low labdane concentration (10 mol%), while at higher concentrations up to 30 mol% a profound decrease in intact liposomes occurred, and a possible existence of interdigitated sheets was concluded.  相似文献   

2.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (l(o)) and liquid-disordered (l(d)) phases display significantly different polarities. Moreover, in the l(o) phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 degrees C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

3.
Lipid rafts are membrane structures enriched in cholesterol, sphingomyelin and glycolipids. In majority raft-mimicking model systems high contents of cholesterol and sphingomyelin (approximately 30 mol%) are used. Existence of raft-like structures was, however, reported also in model and natural membranes containing low levels of cholesterol and sphingomyelin. In the present work differential scanning calorimetry and fluorescence spectroscopy with the use of Laurdan probe was employed to demonstrate the existence of phase separation in model systems containing DPPC with addition of 5 mol% or 10 mol% of both cholesterol and sphingomyelin. Additionally, the influence of three phenothiazine derivatives on phase separation in mixed DPPC/cholesterol/sphingomyelin bilayers was investigated. Chlorpromazine, thioridazine and trifluoperazine were able to induce phase separation in DPPC and DPPC/cholesterol/sphingomyelin bilayers in temperatures below lipid main phase transition. However, only trifluoperazine induced phase separation in temperatures close to or above main phase transition. Trifluoperazine also induced phase separation in bilayers composed of egg yolk PC or DOPC mixed with cholesterol and sphingomyelin. We concluded that presence of lipid domains can be observed in model membranes containing low levels of cholesterol and sphingomyelin. Among three phenothiazine derivatives studied, only trifluoperazine was able to induce a permanent phase separation in phosphatidylcholine/cholesterol/sphingomyelin systems.  相似文献   

4.
Pure 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) or mixed DPPC:1,2-dipalmitoyl phosphatidyletanolamine (DPPE):1,2-dipalmitoyl diphosphatidylserine (DPPS) (17:5:3) liposomes were incorporated with 5 mol% dietary carotenoids (beta-carotene, lutein and zeaxanthin) or with cholesterol (16 and 48 mol%) in the absence or presence of 15 mol% carotenoids, respectively. The carotenoid incorporation yields ranged from 0.42 in pure to 0.72 in mixed phospholipid liposomes. They decreased significantly, from 3 to 14%, in the corresponding cholesterol-doped liposomes, respectively. Highest incorporation yields were achieved by zeaxanthin and lutein in phospholipid liposomes while in cholesterol-containing liposomes, lutein was highest incorporated. The effects on membrane structure and dynamics were determined by differential scanning calorimetry, steady-state fluorescence and anisotropy measurements. Polar carotenoids and cholesterol cause similar, dose-dependent effects: ordering and rigidification revealed by broadening of the transition peak, and increase of anisotropy. Membrane hydrophobicity is determined by cholesterol content and carotenoid polarity. In cholesterol-doped liposomes, beta-carotene is less incorporated than in cholesterol-free liposomes. Our observations suggest effects of carotenoids, even at much lower effective concentrations than cholesterol (8 to 80-fold), on membrane structure and dynamics. Although they are minor constituents of animal membranes, carotenoids may act as modulators of membrane phase transition, fluidity, polarity and permeability, and therefore, can influence the membrane physiology and pathology.  相似文献   

5.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, beta-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (R(t,sat)) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, beta-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

6.
We present a combined theoretical (molecular dynamics, MD) and experimental (differential scanning calorimetry, DSC) study of the effect of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl chain-labeled fluorescent phospholipid analogs (C6-NBD-PC and C12-NBD-PC) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. DSC measurements reveal that < 1 mol% of NBD-PC causes elimination of the pre-transition and a large loss of cooperativity of the main transition of DPPC. Labeling with C6-NBD-PC or C12-NBD-PC shifts the main transition temperature to lower or higher values, respectively. Following our recent report on the location and dynamics of these probes (BBA 1768 (2007) 467-478) in fluid phase DPPC, we present a detailed analysis of 100-ns MD simulations of systems containing either C6-NBD-PC or C12-NBD-PC, focused on their influence on several properties of the host bilayer. Whereas most monitored parameters are not severely affected for 1.6 mol% of probe, for the higher concentration studied (6.2 mol%) important differences are evident. In agreement with published reports, we observed that the average area per phospholipid molecule increases, whereas DPPC acyl chain order parameters decrease. Moreover, we predict that incorporation of NBD-PC should increase the electrostatic potential across the bilayer and, especially for C12-NBD-PC, slow lateral diffusion of DPPC molecules and rotational mobility of DPPC acyl chains.  相似文献   

7.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (?o) and liquid-disordered (?d) phases display significantly different polarities. Moreover, in the ?o phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 °C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

8.
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of different phospholipid components, and to efficiently regulate the motional freedom and hydrophobicity of membranes, so that they can withstand even drastic changes in environmental conditions, such as high external hydrostatic pressure.  相似文献   

9.
Membrane fluidity as affected by the insecticide lindane   总被引:3,自引:0,他引:3  
Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to study the interaction of lindane with model and native membranes. Lindane disorders the gel phase of liposomes reconstituted with dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC), since it broadens and shifts the main phase transition, but no apparent effect is detected in the fluid phase. These effects of lindane are more pronounced in bilayers of short-chain lipids, e.g., DMPC. In equimolar mixtures containing DMPC and DSPC, lindane preferentially interacts with the more fluid lipid species inducing lateral phase separations. However, in mixtures of DMPC and DPPC, the insecticide only broadens and shifts the main phase transition, i.e., an effect similar to that observed in bilayers of pure lipids. Lindane has no apparent effect in DMPC bilayers enriched with high cholesterol content (greater than or equal to 30 mol%), whereas disordering effects can still be detected in bilayers with low cholesterol (less than 30 mol%). Apparently, lindane does not perturb the fluid phase of representative native membranes, namely, mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes in agreement with the results obtained in fluid phospholipid bilayers, despite the reasonable incorporation of the insecticide in these membranes, as previously reported (Antunes-Madeira, M.C. and Madeira, V.M.C. (1985) Biochim. Biophys. Acta 820, 165-172).  相似文献   

10.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, β-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), d-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (Rt,sat) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, β-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

11.
The effect of cholesterol in a liposomal Muc1 vaccine   总被引:1,自引:0,他引:1  
A liposomal Muc1 mucin vaccine for treatment of adenocarcinomas was formulated by incorporating a synthetic Muc1 mucin-based lipopeptide and Lipid A into a DPPC/cholesterol bilayer. Vaccination of mice with the liposomal formulation produced a peptide-specific immune response dependent on the cholesterol content. The response occurred at a threshold of 20-23 mol% cholesterol, and was optimal at cholesterol levels of > or =30 mol%. To understand this cholesterol dependency, we studied the effect of cholesterol on the liposomal bilayer and surface properties. Freeze-fracture electron microscopy showed a unique surface texture that was codependent upon cholesterol (> or =20 mol%) and lipopeptide content. Fluorescence anisotropy measurements exhibited a significant decrease in the rotational motion of 1,6-diphenyl-1,3,5-hexatriene in formulations containing >20 mol% cholesterol and only in the presence of the lipopeptide. At 20 mol% cholesterol and with lipopeptide, DSC showed a significant increase in the main phase transition of the DPPC bilayers, while Raman spectroscopy indicated a more ordered arrangement of DPPC molecules compared to control liposomes containing DPPC/cholesterol alone. Taken together, the data suggest the presence of lipopeptide-rich microdomains at and above a threshold of 20 mol% cholesterol that may play a role in the induction of a peptide-specific immunological response.  相似文献   

12.
Intramolecular excimerization of 1,3-di-1-pyrenylpropane [Py(3)Py] was used to assess the fluidity of sarcoplasmic reticulum membranes (SR); on the basis of the spectral data, the probe incorporates completely inside the membrane probably somewhere close to the polar head groups of phospholipid molecules, however not in the very hydrophobic core. The excimerization rate is very sensitive to lipid phase transitions, as revealed by thermal profiles of dimyristoyl-phosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers. Cholesterol abolishes pretransitions and broadens the thermal profiles of the main transitions which vanish completely at 50 mol % sterol. Excimer formation in liposomes of SR total lipid extracts does not show any sharp transitions, as in the case of DMPC and DPPC. However, the plots display discontinuities at about 20 degrees C which are broadened by cholesterol and not observed at 50 mol % sterol. Also cholesterol has been incorporated in native SR membranes by an exchange technique allowing progressive enrichment without changing the phospholipid/protein molar ratio. As in liposomes, discontinuities of excimer formation at 20 degrees C are broadened by cholesterol enrichment. The full activity of uncoupled Ca2+-ATPase is only affected by cholesterol above a molar ratio to phospholipid of 0.4. However, a significant decrease in activity (about 20%) is only noticed at a ratio of 0.6 (the highest technically achieved); at this ratio, about 28 lipid molecules per Ca2+-ATPase are expected to be relatively free from cholesterol interaction. The vesicle structure is still intact at this high ratio, as judged from the absence of basal activity (not Ca2+ stimulated).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have examined the phase diagram of dipalmitoylphosphatidylcholine (DPPC)--cholesterol-water mixtures at low cholesterol content, and report phase separation between 3 and 10 mol% cholesterol. The two lamellar phases at equilibrium in this region appear to be pure DPPC and 11 mol% cholesterol in DPPC. For these two lamellar phases, which are made up of alternating layers of water and bimolecular lipid leaflets, we have measured the forces of interaction between leaflets and the lateral pressure and compressibility of the leaflets. Both bilayers experience a strong repulsive force when forced together only a few ?ngstr?ms (1 A = 0.1 nm) closer than their maximum separation in excess water. However, the presence of 11 mol% cholesterol causes the bilayers to move apart of 35-A separation from the 19-A characteristic of pure DPPC in excess water. This swelling may result from a decrease in van der Waals attraction between bilayers or from an increase in bilayer repulsion. Differences in bilayer interaction can be a cause for phase separation. More importantly these differences can cause changes in the composition of regions of membranes approaching contact. At 11 mol%, cholesterol substantially increases the lateral compressibility of DPPC bilayers leading to higher lateral density fluctuations and potentially higher bilayer permeability.  相似文献   

14.
The transient membrane lipid diacylglycerol (DG) is known to modify and destabilize phospholipid bilayers and can lead to the formation of nonbilayer structures. Since cholesterol forms a major fraction of many plasma membranes, we have investigated how it modifies the structural effects of DG on bilayers of egg phosphatidylcholine (PC) and egg phosphatidylethanolamine (PE). We view these systems as modelling the behaviour of local, DG-containing sites in membranes. Using X-ray diffraction, we have characterized the lamellar (L alpha) and inverse hexagonal (HII) structures that these ternary lipid mixtures form in excess aqueous solution. As the DG level increases, the lipid progresses from a single L alpha structure to a mixture of L alpha and HII, and then to a pure HII structure. This allows determination of the DG levels at which the HII transition begins, which we interpret as those levels that destabilize bilayers. In both PC and PE bilayers, the presence of 30 mol% cholesterol reduces the amounts of DG required to destabilize the bilayer structure. The destabilization can be translated into the number of neighbouring lipid molecules that a DG molecule perturbs, and of bilayer areas that it affects. The data show that the presence of cholesterol greatly enhances the perturbing effects of DG. We examine the possible role of DG in enzyme activation and membrane fusion.  相似文献   

15.
Differential scanning calorimetry is a useful method to study the thermotropic phase transitions of a phospholipid bilayer. In the present study DSC is used to determine the effects of methanol and ethanol on DPPC and DPPC/2 mol% cholesterol bilayers. The biphasic effect of the main transition and the presence of an extra peak on the DSC cooling scans were observed above certain alcohol concentrations. In the presence of 2% cholesterol, the concentration at which the biphasic effect occurs is increased by both short-chain alcohols. 1,6-Diphenyl-1,3,5-hexatriene (DPH) is used as a fluorescent probe to directly determine the onset of interdigitation in these systems as reflected by a drop in the DPH fluorescence intensity.  相似文献   

16.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

17.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

18.
We performed comparative DSC and FTIR spectroscopic measurements of the effects of cholesterol (Chol) and ergosterol (Erg) on the thermotropic phase behavior and organization of DPPC bilayers. Ergosterol is the major sterol in the biological membranes of yeasts, fungi and many protozoa. It differs from Chol in having two additional double bonds, one in the steroid nucleus at C7-8 and another in the alkyl chain at C22-23. Erg also has an additional methyl group in the alkyl chain at C24. Our DSC studies indicate that the incorporation of Erg is more effective than Chol is in reducing the enthalpy of the pretransition. At lower concentrations Erg is also more effective than Chol in reducing the enthalpies of both the sharp and broad components of main phase transition. However, at sterol concentrations from 30 to 50 mol%, Erg is generally less effective at reducing the enthalpy of the broad components and does not completely abolish the cooperative hydrocarbon chain-melting phase transition at 50 mol%, as does Chol. Nevertheless, in this higher ergosterol concentration range, there is no evidence of the formation of ergosterol crystallites. Our FTIR spectroscopic studies demonstrate that Erg incorporation produces a similar ordering of liquid-crystalline DPPC bilayers as does Chol, but an increased degree of hydrogen bonding of the fatty acyl carbonyl groups in the glycerol backbone region of the DPPC bilayer. These and other results indicate that Erg is less miscible in DPPC bilayers at higher concentrations than is Chol. Finally, we provide a tentative molecular explanation for the comparative experimental and computation results obtained for Erg and Chol in phospholipid bilayers, emphasizing the dynamic conformational differences between these two sterols.  相似文献   

19.
Valsartan is a marketed drug with high affinity to the type 1 angiotensin (AT1) receptor. It has been reported that AT1 antagonists may reach the receptor site by diffusion through the plasma membrane. For this reason we have applied a combination of differential scanning calorimetry (DSC), Raman spectroscopy and small and wide angle X-ray scattering (SAXS and WAXS) to investigate the interactions of valsartan with the model membrane of dipalmitoyl-phosphatidylcholine (DPPC). Hence, the thermal, dynamic and structural effects in bulk as well as local dynamic properties in the bilayers were studied with different valsartan concentrations ranging from 0 to 20 mol%. The DSC experimental results showed that valsartan causes a lowering and broadening of the phase transition. A splitting of the main transition is observed at high drug concentrations. In addition, valsartan causes an increase in enthalpy change of the main transition, which can be related to the induction of interdigitation of the lipid bilayers in the gel phase. Raman spectroscopy revealed distinct interactions between valsartan with the lipid interface localizing it in the polar head group region and in the upper part of the hydrophobic core. This localization of the drug molecule in the lipid bilayers supports the interdigitation view. SAXS measurements confirm a monotonous bilayer thinning in the fluid phase, associated with a steady increase of the root mean square fluctuation of the bilayers as the valsartan concentration is increased. At high drug concentrations these fluctuations are mainly governed by the electrostatic repulsion of neighboring membranes. Finally, valsartans' complex thermal and structural effects on DPPC bilayers are illustrated and discussed on a molecular level.  相似文献   

20.
Existing evidence points out that the biological activity of β-Ala-Tyr may in part related to its interactions with the cell membranes. For comparative reasons the effects of Glu were also examined using identical techniques and conditions. In order to examine their thermal and dynamic effects on membrane bilayers a combination of DSC, Raman and solid state NMR spectroscopy on DPPC/water model membranes were applied and the results were compared. DSC data showed that Glu perturbs to a greater degree the model membrane compared to β-Ala-Tyr. Thus, alteration of the phase transition temperature and half width of the peaks, abolishment of the pretransition and influence on the enthalpy of the phase transition were more pronounced in the Glu loaded bilayers. Raman spectroscopy showed that incorporation of Glu in DPPC/water bilayers increased the order in the bilayers in contrast to the effect of the dipeptide. Several structural and dynamical properties of the DPPC multilamellar bilayers with and without the dipeptide or Glu were compared using high resolution C-13 MAS (Magic Angle Spinning) spectra and spectral simulations of inhomogeneously broadened, stationary P-31 NMR lineshapes measured under CP (Cross-polarization) conditions. These methods revealed that the aminoacid Glu binds in the close realm of the phosphate in the hydrophilic headgroup of DPPC while β-Ala-Tyr is located more deeply inside the hydrophobic zone of the bilayer. The P-31 NMR simulations indicated restricted fast rotary motion of the phospholipids about their long axes in the organized bilayer structure. Finally, by the applied methodologies it is concluded that the two molecules under study exert dissimilar thermal and dynamic effects on lipid bilayers, the Glu improving significantly the packing of the lipids in contrast to the smaller and opposite effect of the dipeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号