首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the interaction of monoclonal antibodies against Escherichia coli RNA polymerase with products of its limited proteolysis. Two major proteolytic fragments of molecular masses 107 and 43 kDa originate as a result of a single cleavage in the vicinity of the 980th amino acid residue. Anti-beta subunit monoclonal antibody PYN-2 inhibiting RNA polymerase activity at the stage of RNA elongation reacts with an epitope located between the amino-terminus and the 50th amino acid residue of the beta subunit. DNA sequencing has shown that the RNA polymerase mutation rpoB22 converts the Gln(1111) codon of the beta subunit gene into the amber codon. An epitope for the monoclonal antibody PYN-6 was located between the major site of proteolytic cleavage and Gln(1111) of the beta subunit.  相似文献   

2.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

3.
Probing eukaryotic RNA polymerases B with monoclonal antibodies   总被引:3,自引:0,他引:3  
Monoclonal antibodies directed against RNA polymerase B of the fungus Podospora comata were selected on the basis of different subunits recognition and inhibitory effect on enzyme activity. A library of 10 antibodies biased toward B180, B145, B39, B23,5 and B11 subunits was constructed. Most of these antibodies also recognize yeast, wheat germ and calf thymus RNA polymerase B. Subunits bearing antigenic determinants are not always homologous in Podospora and yeast enzyme. As some of these antibodies strongly inhibit enzyme activity they constitute potent probes for functional studies of corresponding subunits.  相似文献   

4.
5.
Mouse myeloma cells were fused with splenocytes from a mouse that had been immunized with RNA polymerase I purified from a rat hepatoma. Hybridoma cells were selected and colonies secreting antibodies directed against the enzyme were detected by analysis of cell culture supernatants in a solid phase radioimmunoassay. Two of these cell lines were grown on a larger scale and the interaction between the immunoglobulins obtained from them and RNA polymerase I was studied in detail. Antibodies from both of the hybridoma cell lines were able to inhibit DNA-dependent RNA synthesis catalyzed by RNA polymerases I and III, but not that catalyzed by polymerase II. The antibodies were also capable of reducing the RNA chain elongation reaction catalyzed either by RNA polymerase I associated with isolated nucleoli or by enzyme preinitiated in vitro on calf thymus DNA. Inhibition of RNA polymerase I activity by the monoclonal antibodies was inversely related to the nucleotide concentration. In contrast, the DNA concentration had relatively little effect on inhibition by the antibodies. Analysis of immune complex formation between the antibodies and isolated individual enzyme subunits demonstrated that the monoclonal antibodies were directed against the largest (Mr = 190,000) polypeptide of the polymerase I. These data indicate that the largest subunit of RNA polymerase I contains an immunological determinant in common with RNA polymerase III and suggest that the polymerase I polypeptide of Mr = 190,000 contains a catalytic center involved in RNA chain elongation.  相似文献   

6.
7.
8.
Abstract: Ischemia, anoxia, and hypoxia of the brain have been shown to inhibit protein synthesis in the central nervous system. To obtain data on the changes in DNA-dependent RNA and DNA polymerases as they pertain specifically to neurons and glia, nuclear enriched neuronal and glial fractions were prepared, by sucrose-gradient centrifugation, from spinal cords of adult dogs that had been subjected to prolonged ischemia. The isolated fractions were assayed for enzyme activity by a radiochemical technique. RNA polymerase was affected more than DNA polymerase, activity being reduced considerably in both neurons and glia. Possible causes of the difference in sensitivity to ischemia are discussed.  相似文献   

9.
We have mapped principal sites in the Escherichia coli RNA polymerase molecule that are exposed to attack by trypsin under limited proteolysis conditions. The 1342-amino acid-long beta subunit is alternatively cleaved at Arg903 or Lys909. The cleavage occurs adjacent to a dispensable domain (residues 940-1040) that is absent in the homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria. In E. coli, this region can be disrupted with genetic deletions and insertions without the loss of RNA polymerase function. Insertion of 127 amino acids into this region introduces a new highly labile site for trypsin proteolysis. The dispensable domain carries the epitope for monoclonal antibody PYN-6 (near residue 1000), which can be used for anchoring the catalytically active enzyme on a solid support. We also report the identification of a secondary trypsin cleavage at Arg81 of the beta' subunit within a putative zinc-binding domain that is conserved in prokaryotes and chloroplasts.  相似文献   

10.
11.
By means of indirect immunofluorescence microscopy, we have studied the distribution of RNA polymerase B, of the nucleosomal histones H2b, H3, and H4 and of histone H1, in nuclei of primary spermatocytes of Drosophila hydei. RNA polymerase B and histones, including H1, are found to be present on the loop structures of the Y chromosome. The nucleolus stains only for the histones, but not for RNA polymerase B. Various mutants deficient for some of the loops or altering their morphology, were used to identify the individual chromosomal segments. In growing spermatocytes of the genetic constitution X/0, autosomes and the chromosome X react strongly with antibodies against RNA polymerase B, but not with antibodies against histones.The results suggest that the autosomes, the chromosome X and the Y chromosomal loop structures, with the exception of the nucleolus, are transcribed mostly by RNA polymerase B.  相似文献   

12.
DNA-dependent RNA polymerase B has been extensively purified from the larval fat body of the tobacco hornworm (Manduca sexta) by employing chromatography on ion-exchange columns of DEAE-Sephadex, DEAE-cellulose and phosphocellulose and centrifugation on glycerol gradients. The isolated enzyme after electrophoresis on acrylamide gels shows one main band and one minor band, both having enzyme activity sensitive to alpha-amanitin. The catalytic and physicochemical properties of the enzyme are similar to those of other eucaryotic B-type RNA polymerases. The enzyme has an apparent molecular weight of 530000, is inhibited 50% by alpha-amanitin at 0.04 microgram/ml and shows maximum activity on denatured DNA at 5 mM Mn2+ and 100 mM ammonium sulfate. An antibody was obtained that cross-reacts with the pure enzyme and forms a precipitin line. This antibody does not cross react with either Escherichia coli RNA polymerase or with wheat germ RNA polymerase but does react with one of the B polymerases isolated from wing tissue of the silkmoth, Antheraea pernyi.  相似文献   

13.
QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.  相似文献   

14.
15.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

16.
Complex formation of T7 DNA with RNA polymerase from E. coli B/r WU-36-10-11-12 (E. coli W 12) and its rifampicin-resistant mutant rpoB409 was studied. The rpoB409 mutant possesses a highly pleiotropic effect due to alteration in the RNA polymerase β-subunit structure. The two RNA polymerases have been previously shown to differ in gene selection during RNA synthesis on T7 DNA. In this study it was found that the change in selective properties of the mutant RNA polymerase occurs during its interaction with DNA, the general ability of the enzyme to melt DNA being unaffected.  相似文献   

17.
18.
19.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号