首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The LH/CG receptor is a member of the family of G protein-coupled receptors and consists of a large N-terminal extracellular domain (which is responsible for binding hormone) attached to a region that spans the plasma membrane seven times, ending with an intracellularly located C-terminus. Binding of LH or human CG (hCG) to the LH/CG receptor causes a stimulation of adenylyl cyclase, presumably via activation of Gs. The binding of hormone also leads to its subsequent internalization by receptor-mediated endocytosis. In order to investigate the role of the cytoplasmic tail of this receptor in these events, we prepared a series of mutants in which progressively larger portions of the cytoplasmic tail were deleted. Deletion of 58 amino acids from the C-terminus, in which only 11 cytoplasmic residues remain, resulted in a receptor that was not expressed on the plasma membrane. Receptors rat LHR (rLHR)-t653 and rLHR-t631, in which 21 or 43 amino acids were removed, respectively, were properly expressed. These results suggest that a region(s) between residues 616 and 631 of the rLH/CG receptor are required for proper insertion and/or targeting of the receptor into the plasma membrane. Cells expressing rLHR-t653 or rLHR-t631 bound hCG with the same high affinity as cells expressing the full-length receptor, and basal levels of cAMP were the same among the cells. However, cells expressing the truncated receptors responded to hCG with approximately 2-fold greater levels of maximal cAMP accumulation than cells expressing the full-length receptor. Deletion of up to 43 amino acids from the C-terminus of the rLH/CG receptor had no deleterious effect on hCG internalization. In fact, mutants lacking 21 and 43 amino acids exhibited progressively faster rates of hCG internalization as compared to the full-length receptor. Once internalized, hCG was also degraded at a faster rate in cells expressing the truncated LH/CG receptors. Since hCG-stimulated cAMP stimulation and hCG internalization are retained by rLHR-t631, it can be concluded that the residues, not necessarily the same, required for these functions reside within the 26 amino acids of the cytoplasmic tail closest to the seventh transmembrane helix and/or residues within the intracellular loops. Our data show, however, that both hCG-stimulated cAMP production and hCG internalization are enhanced by the removal of the distal portion of the cytoplasmic tail.  相似文献   

2.
The extent of agonist-induced down-regulation of the LH/CG receptor (LHR) in human kidney 293 cells transfected with the rat LHR (rLHR) is much lower than in two Leydig tumor cell lines (MA-10 and R2C) that express the rodent LHR endogenously. This difference can not be attributed to differences in the recycling of internalized receptors, or in the replenishment of new receptors at the cell surface. It can be correlated, however, with the half-life of internalization of the bound agonist, which is approximately 60 min in Leydig tumor cells and about 100 min in transfected 293 cells. To determine whether the rate of internalization of the bound agonist affects down-regulation, we compared these two parameters in 293 cells expressing four rLHR mutants that enhance internalization and three mutants that impair internalization. We show that all four mutations of the rLHR that enhanced internalization enhanced down-regulation, while only one of the three mutations that impaired internalization impaired down-regulation. In addition, cotransfections of 293 cells with the rLHR-wt and three constructs that enhanced internalization (G protein-coupled receptor kinase 2, beta-arrestin, and arrestin-3) increased down-regulation, while a related construct (visual arrestin) that had no effect on internalization also had no effect on down-regulation. We conclude that the rate of internalization of the agonist-LHR complex is the main determinant of the extent of down-regulation of the LHR.  相似文献   

3.
Using biochemical and imaging approaches, we examined the postendocytotic fate of the complex formed by human choriogonadotropin (hCG) and a constitutively active mutant of the human lutropin receptor (hLHR-L457R) found in a boy with precocious puberty and Leydig cell hyperplasia. After internalization, some of the complex formed by the hLHR-wild type (hLHR-wt) and hCG recycles to the cell surface, and some is found in lysosomes where the hormone is degraded. In contrast, the complex formed by the hLHR-L457R and hCG is not routed to the lysosomes, most of it is recycled to the cell surface and hormone degradation is barely detectable. For both, hLHR-wt and -L457R, there is an hCG-induced loss of cell surface receptors that accompanies internalization but this loss cannot be prevented by leupeptin. The removal of recycling motifs of the hLHR by truncation of the C-terminal tail at residue 682 greatly enhances the lysosomal accumulation of the hormone-receptor complexes formed by the hLHR-wt or the L457R mutant, the degradation of the internalized hormone, and the loss of cell surface receptors. The degradation of the hormone internalized by these mutants as well as the loss of cell surface receptors is largely prevented by leupeptin. These results highlight a previously unrecognized complexity in the postendocytotic trafficking of the hLHR and document a clear difference between the properties of the constitutively active mutant and the agonist-activated hLHR-wt. This lack of lysosomal degradation of the L457R mutant could contribute to its constitutive activity by prolonging the duration of signaling.  相似文献   

4.
The amino acid sequences of the human (h) and rat (r) lutropin/choriogonadotropin receptors (LHR) are 87% identical, but the rate of agonist-induced internalization of the hLHR is approximately 7 times faster than that of the rLHR. Chimeras of the hLHR and the rLHR showed that this rate is dictated by the serpentine domain and the cytoplasmic tail. Further mutational analysis identified seven residues, two adjacent residues in the second intracellular loop (Val/Gln in the rLHR and Ile/His in the hLHR), four non-contiguous residues in the third intracellular loop (Arg/Gln/Thr/Pro in the rLHR and Lys/Arg/Met/Thr in the hLHR), and one in the C-terminal tail (Leu in the rLHR and Phe in the hLHR), that are necessary and sufficient to impart the slow rate of internalization of the rLHR and the fast rate of internalization of the hLHR. The internalization of the rLHR and the hLHR display different sensitivities to the non-visual arrestins. Therefore, we also tested if the simultaneous exchange of these seven residues resulted in the exchange of this property. Since this was found to be the case, we propose that these seven residues identified here form a non-visual arrestin-binding site.  相似文献   

5.
The high degree of amino acid sequence homology and the divergent ligand binding affinities of the rat (r) and human (h) LH receptors (LHRs) allowed us to identify amino acid residues of their extracellular domain that are responsible for the different binding affinities of bovine (b) and hLH, and human choriogonadotropin (hCG) to the hLHR and rLHR. Because of the proposed importance of the beta-sheets of the leucine-rich repeats (LRRs) of the extracellular domain of the LHR on hormone binding, we examined 10 divergent residues present in these regions by analyzing two complementary sets of mutants in which hLHR residues were substituted with the corresponding rLHR residues and vice versa. These experiments resulted in the identification of a single residue (a Ile or Ser in the C-terminal end of LRR2 of the hLHR or rLHR, respectively) that is important for hLH binding affinity. Surprisingly, however, this residue does not affect hCG or for bLH binding affinity. In fact, the results obtained with bLH and hCG show that several of the divergent residues in the beta-sheets of LRR1-9 affect bLH binding affinity, but none of them affect hCG binding affinity. Importantly, our results also emphasize the involvement of residues outside of the beta-sheets of the LRRs of the LHR in ligand binding affinity. This finding has to be considered in future models of the interaction of LH/CG with the LHR.  相似文献   

6.
The time course of internalization of radioiodinated vasoactive intestinal peptide (VIP) in HT29 cells was obtained using the technique of acetic acid removal of cell-surface-bound peptide. Even after 10 min incubation at 37 degrees C, 125I-VIP, initially bound on the HT29 cell surface, was compartmentalized within the cells. During the same time, degraded radioactive material was released by cells in the incubation medium. Localization of internalized 125I-VIP was investigated using two different subcellular fractionation techniques. 10 min after the onset of internalization, 125I-VIP labelling was found in intermediate structures and 10 min later the bulk of the radioactivity was detected in a low-density fraction containing very large lysosomes with a multivesicular aspect. The lysosomotropic agent NH4Cl appeared to inhibit 125I-VIP internalization, degradation and appearance of radiolabelled peptide in the large lysosomes in a time-dependent manner. Moreover, the effect of NH4Cl resulted in an accumulation of radioactive material in fractions containing microsomal structures. On the other hand, bacitracin, together with methylamine, highly enhanced 125I-VIP labelling in a membrane fraction, suggesting that these agents possibly act on a cell surface component of HT29 cells. These results support the conclusion that in HT29 cells, prelysosomal structures and large secondary lysosomes are probably part of the intracellular pathway of internalized VIP.  相似文献   

7.
Previous results from this laboratory have shown that human kidney (293) cells transfected with the rat follitropin receptor (rFSHR) internalize agonist (i.e. human follitropin, hFSH) at a rate similar to that of other agonist-G protein-coupled receptor complexes while 293 cells transfected with the rat lutropin/choriogonadotropin receptor (rLHR) internalize agonist (human choriogonadotropin, hCG) at a rate that is about 1 order of magnitude slower. Taking advantage of this difference and the high degree of homology between the rLHR and rFSHR, we have now used chimeras of these two receptors to begin to delineate structural features that influence their internalization. Analysis of six chimeras that exchanged only the transmembrane domains (designated FLF and LFL), only the COOH-terminal domains (FFL or LLF) or both domains (FLL or LFF) show that the origin of the extracellular domain is at least as important, if not more, than the origin of the transmembrane and COOH-terminal domains in determining the rate of internalization of the gonadotropin receptors. Thus, the rates of internalization of agonist internalization mediated by FFL, FLF, and FLL more closely resemble rFSHR than rLHR, while the rates of agonist internalization mediated by LLF, LFL, and LFF more closely resemble rLHR than rFSHR. The importance of the extracellular domain was also evident even upon overexpression of arrestin-3, a protein that enhances the rate of internalization of the wild-type receptors and chimeras by binding to their intracellular regions.  相似文献   

8.
Using chimeras and more discrete exchange mutations of the rat (r) and human (h) gonadotropin receptors, we had previously identified multiple noncontiguous residues of the lutropin (LHR) and follitropin (FSHR) receptors that dictate their rates of internalization. Since the internalization of the LHR and the FSHR is driven by their abilities to associate with the nonvisual arrestins, we hypothesized that one or more of the residues previously identified by the internalization assays are involved in the formation of the receptor/nonvisual arrestin complex. In the studies reported herein, we tested this hypothesis by measuring the association of arrestin-3 with a large number of rLHR/hLHR and rFSHR/hFSHR exchange mutants that affect internalization. The results presented show that the same residues that dictate the rate of internalization of these two receptor pairs affect their ability to associate with arrestin-3. Although these residues are located in distinct topological domains, our analyses show that threonine residues in the third intracellular loop of both receptor pairs are particularly important for the formation of the receptor/arrestin-3 complexes and internalization. We conclude that the different rates of internalization of the gonadotropin receptors are dictated by their different abilities to associate with the nonvisual arrestins and that this association is, in turn, largely dictated by the presence of threonine residues in their third intracellular loops.  相似文献   

9.
A deletion between amino acid residues Ser(895) and Val(1075) in the carboxyl terminus of the human calcium receptor (hCaR), which causes autosomal dominant hypocalcemia, showed enhanced signaling activity and increased cell surface expression in HEK293 cells (Lienhardt, A., Garabédian, M. G., Bai, M., Sinding, C., Zhang, Z., Lagarde, J. P., Boulesteix, J., Rigaud, M., Brown, E. M., and Kottler, M. L. (2000) J. Clin. Endocrinol. Metab. 85, 1695-1702). To identify the underlying mechanism(s) for these increases, we investigated the effects of carboxyl tail truncation and deletion in hCaR mutants using a combination of biochemical and cell imaging approaches to define motifs that participate in regulating cell surface numbers of this G protein-coupled receptor. Our data indicate a rapid constitutive receptor internalization of the cell surface hCaR, accumulating in early (Rab7 positive) and late endosomal (LAMP1 positive) sorting compartments, before targeting to lysosomes for degradation. Recycling of hCaR back to the cell surface was also evident. Truncation and deletion mapping defined a 51-amino acid sequence between residues 920 and 970 that is required for targeting to lysosomes and degradation but not for internalization or recycling of the receptor. No singular sequence motif was identified, instead the required sequence elements seem to distribute throughout this entire interval. This interval includes a high proportion of acidic and hydroxylated amino acid residues, suggesting a similarity to PEST-like degradation motif (PESTfind score of +10) and several glutamine repeats. The results define a novel large PEST-like sequence that participates in the sorting of internalized hCaR routed to the lysosomal/degradation pathway that regulates cell surface receptor numbers.  相似文献   

10.
Morphologic probes of polypeptide hormone receptor interactions   总被引:1,自引:0,他引:1  
Polypeptide hormones, growth factors, and a variety of other naturally occurring ligands bind specifically to receptors on the cell surface. At physiologic temperatures these ligands are internalized by cells and associate intracellularly with lysosomes. Receptor-mediated internalization provides a simple mechanism that may act to couple receptor-mediated hormone degradation with receptor-medicated receptor regulation.  相似文献   

11.
The effects of several mutations of the human LH receptor (hLHR) on the phosphorylation, internalization, and turnover of the cell surface receptor were examined. Three gain-of-function mutations associated with Leydig cell hyperplasia (L457R and D578Y) and one associated with Leydig cell adenomas (D578H), one signaling-impaired mutation associated with Leydig cell hypoplasia (I625K), and two laboratory designed signaling-impaired mutations (D405N and Y546F) were used. The signaling-impaired mutations showed a reduction in human CG (hCG)-induced receptor phosphorylation and internalization. Mutation of the phosphorylation sites of these loss-of-function mutants had little or no additional effect on internalization. Cotransfection with G protein-coupled receptor kinase-2 (GRK2) rescued the hCG-induced phosphorylation and internalization of the signaling-impaired mutations but only if the phosphorylation sites were intact. Overexpression of arrestin-3 rescued the rate of internalization regardless of whether or not the phosphorylation sites were intact. Only two of the three constitutively active mutants displayed an increase in basal phosphorylation. Although they all failed to respond to hCG with increased receptor phosphorylation, they all internalized hCG faster than wild-type hLHR (hLHR-wt). Mutation of the phosphorylation sites of these constitutively active mutants lengthened the half-time of internalization of hCG toward that of hLHR-wt. Overexpression of arrestin-3 had little or no effect on the already short half-time of internalization of hCG mediated by these mutants. The data obtained with the signaling-impaired and phosphorylation-deficient mutants of the hLHR support a model whereby receptor phosphorylation and activation play a redundant role in the internalization of hCG. The results obtained with the constitutively active mutants suggest that, when occupied by hCG, these mutants assume a conformation that bypasses many of the steps (i.e. activation, phosphorylation, and/or arrestin binding) involved in internalization.  相似文献   

12.
The endocytosis and intracellular fate of epidermal growth factor (EGF) were studied in A431 cells. After 15-20 min of internalization at 37 degrees C, rhodamine-labeled EGF (EGF-Rh) accumulated into large juxtanuclear compartment consisting of closely related vesicles. This structure was shown to be localized in the para-Golgi region. Fluorescein-labeled transferrin (Tr-FITC) was observed in the same region when added to the cells simultaneously with EGF-Rh. Using microscope spectrofluorometer, we determined that the Tr-FITC-containing para-Golgi structures have a pH of 6.1 +/- 0.3 while lysosomes containing dextran-fluorescein have a pH of 5.0 +/- 0.2. To study the dynamics of EGF-receptor dissociation during endocytosis a mild detergent treatment of living cells was used for extraction of an intracellular receptor-unbound EGF. During the first hour of internalization at 37 degrees C, neither significant dissociation of EGF-receptor complexes nor EGF degradation was observed. After 3 h of endocytosis, the percentage of unbound EGF increased to 55% of the total internalized EGF. These results suggest that EGF remains associated with receptors during endocytosis in A431 cells until it is transferred to lysosomes where the pH of the EGF microenvironment is dropped to 5. A prolonged presence of EGF-receptor complexes in the para-Golgi region might be of importance in mitotic signaling.  相似文献   

13.
The rat follitropin receptor (rFSHR) is an unusual G protein-coupled receptor in that agonist-induced activation leads to the phosphorylation of the first and third intracellular loops instead of the C-terminal tail. To determine regions of G protein-coupled receptors that affect internalization independently of phosphorylation we examined the effects of truncations of the C-terminal tail of the rFSHR on agonist-induced internalization. Our studies show that progressive truncations of a region flanked by residues 642 and 651 enhance the internalization of human follicle-stimulating hormone (hFSH). Further characterization of a mutant truncated at residue 649 (designated rFSHR-t649) and another mutant in which the 642-651 region was deleted in the context of the full-length rFSHR, designated rFSHR(Delta642-651), showed that both of them internalized hFSH at rates that were 2-3 times faster than rFSHR-wild type (wt). Like rFSHR-wt, however, the internalization of hFSH mediated by rFSHR-t649 and rFSHR(Delta642-651) can be inhibited with dominant-negative mutants of the non-visual arrestins or dynamin. Alanine-scanning mutagenesis of the 642-651 region suggests that the effects on internalization are not mediated by a single residue, however. In an attempt to understand the molecular basis of the enhanced internalization of hFSH mediated by these mutants we used an assay that can be readily used to assess the association of the rFSHR with the arrestin-3 in co-transfected cells. Using this assay we were able to show that, when compared with rFSHR-wt, rFSHR(Delta642-651) displays an approximately 4-fold enhancement in binding affinity for arrestin-3 and an approximately 1.7-fold reduction in maximal arrestin-3 binding capacity. We conclude that a short linear sequence present in the C-terminal tail of the rFSHR (642SATHNFHARK651) that is not phosphorylated limits internalization by lowering the affinity of the rFSHR for the endogenous non-visual arrestins.  相似文献   

14.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

15.
Alpha 1-Antitrypsin (alpha 1-AT) is similar to other members of the serine protease inhibitor (serpin) supergene family in that it undergoes structural rearrangement during the formation of a covalently stabilized inhibitory complex with its cognate enzyme, neutrophil elastase. We have recently demonstrated an abundant, high-affinity cell surface receptor on human hepatoma cells and human mononuclear phagocytes which recognizes a conformation-specific domain of the alpha 1-AT-elastase complex as well as of other serpin-enzyme complexes (Perlmutter, D. H., Glover, G. I., Rivetna, M., Schasteen, C. S., and Fallon, R. J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3753-3757). Binding to this serpin-enzyme complex (SEC) receptor activates a signal transduction pathway for increased expression of the alpha 1-AT gene and may be responsible for clearance of serpin-enzyme complexes. In this study, we show that there is time-dependent and saturable internalization of alpha 1-AT-elastase and alpha 1-AT-trypsin complexes in human hepatoma HepG2 cells. Internalization is mediated by the SEC receptor as defined by inhibition by synthetic peptides corresponding to residues 359-374 of alpha 1-AT. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of intracellular radioactivity demonstrated that intact 75- and 66-kDa alpha 1-AT-trypsin complexes were internalized. Kinetic analysis of internalization at 37 degrees C showed that a single cohort of 125I-alpha 1-AT-trypsin complexes, prebound to cells at 4 degrees C, disappeared from the cell surface and accumulated intracellularly within 5-15 min at 37 degrees C. The intracellular concentration of radiolabeled complexes then decreased rapidly coincident with appearance of acid-soluble degradation products in the extracellular culture fluid. Intracellular degradation was inhibited by internalization at 18 degrees C or by internalization at 37 degrees C in the presence of weak bases ammonium chloride, primaquine, and chloroquine, indicating that degradation is lysosomal. These results indicate that in addition to its role in signal transduction the SEC receptor participates in internalization and delivery of alpha 1-AT-protease complexes to lysosome for degradation.  相似文献   

16.
Although highly homologous in amino acid sequence, the agonist-receptor complexes formed by the human lutropin receptor (hLHR) and rat (r) LHR follow different intracellular routes. The agonist-rLHR complex is routed mostly to a lysosomal degradation pathway whereas a substantial portion of the agonist-hLHR complex is routed to a recycling pathway. In a previous study, we showed that grafting a five-residue sequence (GTALL) present in the C-terminal tail of the hLHR into the equivalent position of the rLHR redirects a substantial portion of the internalized agonist-rLHR complex to a recycling pathway.Using a number of mutations of the GTALL motif, we now show that only the first two residues (GT) of this motif are necessary and sufficient to induce recycling of the internalized agonist-rLHR complex. Phosphoamino acid analysis and mutations of the GT motif show that phosphorylation of the threonine residue is not necessary for recycling. Lastly, we show that addition of portions of the C-terminal tail of the hLHR that include the GT motif to the C-terminal tails of the rat follitropin or murine delta-opioid receptors promotes the post-endocytotic recycling of these G protein-coupled receptors.We conclude that the GT motif present in the C-terminal tail of the hLHR is a transferable motif that promotes the postendocytotic recycling of several G protein-coupled receptors and that the GT-induced recycling does not require the phosphorylation of the threonine residue.  相似文献   

17.
《The Journal of cell biology》1984,99(4):1242-1250
The experiments presented herein were designed to determine the fate of the human choriogonadotropin (hCG) receptor during endocytosis of the receptor-bound hCG. Using several biochemical approaches, it is shown that the receptor is internalized together with the hormone into endocytic vesicles and transferred to lysosomes without ligand dissociation. Once delivered to the lysosomes, the hCG-receptor complex dissociates, and the free hormone is degraded. This pathway appears to prevent receptor recycling and probably promotes receptor degradation.  相似文献   

18.
The vast majority of G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation of an active receptor followed by arrestin binding. The arrestin x receptor complex is then internalized. Internalized receptor can be recycled back to the plasma membrane (resensitization) or targeted to lysosomes for degradation (down-regulation). The intracellular compartment where this choice is made and the molecular mechanisms involved are largely unknown. Here we used two arrestin2 mutants that bind with high affinity to phosphorylated and unphosphorylated agonist-activated beta 2-adrenergic receptor to manipulate the receptor-arrestin interface. We found that mutants support rapid internalization of beta 2-adrenergic receptor similar to wild type arrestin2. At the same time, phosphorylation-independent arrestin2 mutants facilitate receptor recycling and sharply reduce the rate of receptor loss, effectively protecting beta 2-adrenergic receptor from down-regulation even after very long (up to 24 h) agonist exposure. Phosphorylation-independent arrestin2 mutants dramatically reduce receptor phosphorylation in response to an agonist both in vitro and in cells. Interestingly, co-expression of high levels of beta-adrenergic receptor kinase restores receptor down-regulation in the presence of mutants to the levels observed with wild type arrestin2. Our data suggest that unphosphorylated receptor internalized in complex with mutant arrestins recycles faster than phosphoreceptor and is less likely to get degraded. Thus, targeted manipulation of the characteristics of an arrestin protein that binds to a G protein-coupled receptors can dramatically change receptor trafficking and its ultimate fate in a cell.  相似文献   

19.
The studies presented herein were aimed at characterizing the pathway involved in the internalization and degradation of human choriogonadotropin by cultured Leydig tumor cells. A quick biochemical method that differentiates between the surface-bound and internalized hormone was developed. Using this method and two hormone derivatives labeled exclusively (with 125I) in the alpha or beta subunits, it was possible to follow the fate of each hormone subunit during hormone binding, internalization, and degradation. The results show that the hormone is internalized in the intact form and that it reaches its place of degradation (presumably the lysosomes) in the intact form. The pathway for degradation of the internalized hormone is complex, and it appears to involve processing of one or both subunits of the intact hormone, followed by subunit dissociation and further degradation of the individual subunits. The alpha subunit is quickly degraded by the cells. The only detectable degradation products are extracellular amino acids. The beta subunit is degraded slower, and several intracellular degradation products are detectable before amino acids appear in the medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号