首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

2.
Detection of the central cholinergic deficits, a consistent feature of Alzheimer's disease, is essential to allow preventive measures and/or symptomatic treatment already at a very early stage of the disease. The vesicular acetylcholine transporter (VAChT) represents an appropriate target to establish PET radiotracer that are adequate for brain imaging the loss of cholinergic terminals. Here we describe the synthesis and binding characteristics of novel derivatives of vesamicol, known to represent a specific antagonist of VAChT sites. Novel benzyl ether derivatives of vesamicol either 4- or 5-substituted at the cyclohexylring have been synthesized by different regioselective ring opening reactions of a same epoxide precursor. The affinity and selectivity of the novel compounds to VAChT sites were analyzed by competitive radioligand binding studies in rat brain and liver membrane preparations using tritium labeled radioligands. The 4-substituted fluorobenzylether of vesamicol 10b was shown to exhibit a high affinity to VAChT sites (K(i)-value(10b)=10.7+/-1.7 nM), but demonstrated also binding capacities to sigma receptors (K(i-)value(10b)=18.5+/-6.9 nM, [(3)H]DTG; K(i)-value(10b)=30.6+/-9.6 nM, [(3)H]haloperidol). The data suggest the potential of vesamicol derivatives to design appropriate radiotracer for PET imaging of central cholinergic deficits.  相似文献   

3.
Bravo DT  Kolmakova NG  Parsons SM 《Biochemistry》2004,43(27):8787-8793
Active transport of acetylcholine (ACh) by vesicular ACh transporter (VAChT) is driven by a proton-motive force established by V-ATPase. A published microscopic kinetics model predicts the ACh-binding site is primarily oriented toward the outside for nontransporting VAChT and toward the inside for transporting VAChT. The allosteric ligand [(3)H]vesamicol cannot bind when the ACh-binding site is outwardly oriented and occupied by ACh, but it can bind when the ACh site is inwardly oriented. The kinetics model was tested in the paper reported here using rat VAChT expressed in PC12(A1237) cells. Equilibrium titrations of [(3)H]vesamicol binding and ACh competition show that ATP blocks competition between vesamicol and ACh in over one-half of the VAChT. NaCl did not mimic ACh chloride, and bafilomycin A(1) and FCCP completely blocked the ATP effect, which shows that it is mediated by a proton-motive force. The data are consistent with reorientation of over one-half of the ACh-binding sites from the outside to the inside of vesicles upon activation of transport. The observations support the proposed microscopic kinetics model, and they should be useful in characterizing effects of mutations on the VAChT transport cycle.  相似文献   

4.
Chicken retinas were exposed to intravitreal kainic acid to destroy amacrine and bipolar cells at low concentrations, and horizontal cells at high concentrations in addition. Ganglion cells were destroyed by intravitreal injections of colchicine. Low doses of kainic acid reduced the number of binding sites for both [3H]quinuclidinyl benzilate (muscarinic acetylcholine receptors) and N-[propionyl 3H]-bungarotoxin (nicotinic acetylcholine receptors), with little additional loss at higher doses. In contrast, colchicine reduced the number of binding sites for N-[propionyl-3H]-bungarotoxin, but had little or no effect on the number of binding sites for [3H]quinuclidinyl benzilate. These results are consistent with the idea that, in chicken retina, cholinergic amacrine cells make contact with ganglion cell dendrites at sites which possess mainly nicotinic acetylcholine receptors, while both types of receptor are involved in interactions between amacrine cells and perhaps bipolar cells.  相似文献   

5.
A serum factor is recognized to interact with a protein kinase C (PKC) pathway. Indeed, treatment with fetal bovine serum enhanced ACh-evoked currents by PKC activation in the neuronal nicotinic ACh receptors (α7) andTorpedoACh receptors expressed inXenopusoocytes. In addition, potentiation of ACh-evoked currents induced by fetal bovine serum was observed also in the mutantTorpedoACh receptors lacking potent PKC phosphorylation sites at Ser333on the α subunit and Ser377on the δ subunit; the potentiation was inhibited by the PKC inhibitor, PKC inhibitor peptide (PKCI), indicating that ACh receptor currents were enhanced by PKC activation but not by PKC phosphorylation of the receptors. On the other hand, fetal bovine serum enhanced kainate-evoked currents in oocytes expressing the α-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR1,3. The enhancement was not affected by the PKC inhibitors, PKCI or GF109203X, and instead, was inhibited by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, KN-62. These results suggest that serum is not only involved in PKC activation but in CaMKII activation, and that thereby ACh receptor currents and AMPA receptor currents are each potentiated.  相似文献   

6.
Metabolic labeling of a mutant PC12 cell line, A123.7, expressing recombinant rat vesicular acetylcholine transporter (VAChT) with radiolabeled inorganic phosphate was used to demonstrate phosphorylation of the transporter on a serine residue. Mutational analysis was used to demonstrate that serine 480, which is located on the COOH-terminal cytoplasmic tail, is the sole phosphorylation site. Phosphorylation of serine 480 was attributable to the action of protein kinase C. Using a permanently dephosphorylated form of rat VAChT, S480A rVAChT, it was shown that this mutant displays the same kinetics for the transport of acetylcholine and the binding of the inhibitor vesamicol as does the wild type transporter. However, sucrose gradient density centrifugation showed that, unlike wild type VAChT, the S480A mutant did not localize to synaptic vesicles. These results suggest that phosphorylation of serine 480 of VAChT is involved in the trafficking of this transporter.  相似文献   

7.
We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 M, respectively. Specific binding of glycine was displaced by -alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.  相似文献   

8.
Ojeda AM  Kolmakova NG  Parsons SM 《Biochemistry》2004,43(35):11163-11174
This study sought primarily to locate the acetylcholine (ACh) binding site in the vesicular acetylcholine transporter (VAChT). The design of the study also allowed us to locate residues linked to (a) the binding site for the allosteric inhibitor vesamicol and (b) the rates of the two transmembrane reorientation steps of a transport cycle. In more characterized proteins, ACh is known to be bound in part through cation-pi solvation by tryptophan, tyrosine, and phenylalanine residues. Each of 11 highly conserved W, Y, and F residues in putative transmembrane domains (TMDs) of rat VAChT was mutated to A and a different aromatic residue to test for loss of cation-pi solvation. Mutated VAChTs were expressed in PC12(A123.7) cells and characterized with the goal of determining whether mutations widely perturbed structure. The thermodynamic affinity for ACh was determined by displacement of trace [(3)H]-(-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol) with ACh, and Michaelis-Menten parameters were determined for [(3)H]ACh transport. Expression levels were determined with [(3)H]vesamicol saturation curves and Western blots, and they were used to normalize V(max) values. "Microscopic" parameters for individual binding and rate steps in the transport cycle were calculated on the basis of a published kinetics model. All mutants were expressed adequately, were properly glycosylated, and bound ACh and vesamicol. Subcellular mistargeting was shown not to be responsible for poor transport by some mutants. Mutation of residue W331, which lies in the beginning of TMD VIII proximal to the vesicular lumen, produced 5- and 9-fold decreased ACh affinities and no change in other parameters. This residue is a good candidate for cation-pi solvation of bound ACh. Mutation of four other residues decreased the ACh affinity up to 6-fold and also affected microscopic rate constants. The roles of these residues in ACh binding and transport thus are complex. Nine mutations allowed us to resolve the ACh and vesamicol binding sites from each other. Other mutations affected only the rates of the transmembrane reorientation steps, and four mutations increased the rate of one or the other. Two mutations increased the value of K(M) up to 5-fold as a result of rate effects with no ACh affinity effect. The results demonstrate that analysis of microscopic kinetics is required for the correct interpretation of mutational effects in VAChT. Results also are discussed in terms of recently determined three-dimensional structures for other transporters in the major facilitator superfamily.  相似文献   

9.
R-cognin, a cell recognition molecule, and insulin are known to play significant roles in GABAergic differentiation in the developing chick retina. In the present study, the effects of insulin and R-cognin on post-synaptic (GABAceptive) differentiation were investigated. In ovo binding of [3H]GABA and [3H]flunitrazepam ([3H]Flu) to the GABA and benzodiazepine (BZD) receptors, respectively, remained at low levels during early embryogenesis but increased sharply from mid-embryogenesis through hatching, increases which also occur in cultured neurons from early-embryonic (E7) and mid-embryonic (E11) chick retina. E7 neurons respond to insulin treatment (100 ng/ml) with increased [3H]Flu binding but no change in [3H]GABA binding. Cognin antibody (10 g/ml) treatment of E7 neurons caused no significant inhibition of the developmental increases in binding of either radioligand. Insulin in E11 cultures led to greater developmental increases in binding sites for both radioligands, but exposure to cognin antibody was without significant effect. These data, along with previous studies, indicate that GABAergic differentiation in developing chick retina is regulated, in part, by insulin and cognin-mediated cell signaling. Insulin also regulates post-synaptic (GABAceptive) differentiation whereas cognin-mediated interactions are relatively insignificant.Abbreviations BZD benzodiazepine - ChAT choline acetyltransferase - Flu flunitrazepam - GABA -aminobutyric acid - GAD glutamate decarboxylase (glutamic acid decarboxylase)  相似文献   

10.
Both the membrane-bound choline acetyltransferase (MChAT) and soluble ChAT (SChAT) were found to be activated by ATP-mediated protein phosphorylation. ATP activation of MChAT but not SChAT was found to depend on the integrity of proton gradient of synaptic vesicles because conditions disrupting the proton gradient also abolished the activation of MChAT by ATP. Among the kinases studied, Ca2+/calmodulin kinase II is most effective in activation of MChAT. Transport of ACh into synaptic vesicles by vesicular acetylcholine transporter (VAChT) is also proton gradient-dependent; therefore we proposed that there is a functional coupling between ACh synthesis and its packaging into synaptic vesicles. This notion is supported by the following findings: first, the newly synthesized [3H]-ACh from [3H]-choline was taken up much more efficiently than the pre-existing ACh; second, ATP-activation of MChAT was abolished when VAChT was inhibited by the specific inhibitor vesamicol; third, the activity of ChAT was found to be markedly increased when neurons are under depolarizing conditions.  相似文献   

11.
Bravo DT  Kolmakova NG  Parsons SM 《Biochemistry》2005,44(22):7955-7966
This research investigated the roles of 7 conserved ionic residues in the 12 putative transmembrane domains (TMDs) of vesicular acetylcholine transporter (VAChT). Rat VAChT in wild-type and mutant forms was expressed in PC12(A123.7) cells. Transport and ligand binding were characterized at different pH values using filter assays. The ACh binding site is shown to exhibit high or low affinity (K(d) values are approximately 10 and 200 mM, respectively). Mutation of the lysine and aspartate residues in TMDs II and IV, respectively, can decrease the fraction of sites having high affinity. In three-dimensional structures of related transporters, these TMDs lie next to each other and distantly from TMDs VIII and X, which probably contain the binding sites for ACh and the allosteric inhibitor vesamicol. Importantly, mutation of the aspartate in TMD XI can create extra-high affinities for ACh (K(d) approximately 4 mM) and vesamicol (K(d) approximately 2 nM compared to approximately 20 nM). Effects of different external pH values on transport indicate a site that must be protonated (apparent pK(a) approximately 7.6) likely is the aspartate in TMD XI. The observations suggest a model in which the known ion pair between lysine in TMD II and aspartate in TMD XI controls the conformation or relative position of TMD XI, which in turn controls additional TMDs in the C-terminal half of VAChT. The pH effects also indicate that sites that must be unprotonated for transport (apparent pK(a) approximately 6.4) and vesamicol binding (apparent pK(a) approximately 6.3) remain unidentified.  相似文献   

12.
The elevation of [cAMP]i is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492, in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE1 and forskolin-induced phosphorylation of Ser312 and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE1-evoked cAMP accumulation by thrombin required both Gi and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492 leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding.Upon vascular injury, platelets adhere to the newly exposed subintimal collagen and undergo activation leading to platelet spreading to cover the damaged region and release of thrombogenic factors such as ADP and thromboxane A2. In addition, platelets are activated by thrombin, which is generated as a result of activation of the coagulation pathway, and stimulates platelets by cleaving the protease-activated receptors (PAR),2 PAR-1 and PAR-4. The final common pathway is the exposure of fibrinogen binding sites on integrin αIIbβ3 resulting in platelet aggregation and thrombus formation.Thrombin-mediated cleavage of PARs leads to activation of phospholipase C β (PLC), hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate and a subsequent increase in [Ca2+]i and activation of protein kinase C (PKC). Protein kinase C contributes to platelet activation both directly, through affinity regulation of the fibrinogen receptor, integrin αIIbβ3 (1), and indirectly by enhancing degranulation (2). Thrombin also stimulates activation of PI 3-kinases and subsequent generation of PI (3, 4, 5) trisphosphate and PI (3, 4) bisphosphate (3), which recruit protein kinase B (PKB) to the plasma membrane where it becomes phosphorylated and activated.Platelet activation is opposed by agents that raise intracellular 3′-5′-cyclic adenosine monophosphate ([cAMP]i). cAMP is a powerful inhibitory second messenger that down-regulates platelet function by interfering with Ca2+ homeostasis, degranulation and integrin activation (4). Synthesis of cAMP is stimulated by mediators such as prostaglandin I2 (PGI2), which bind to Gs-coupled receptors leading to activation of adenylate cyclase (AC). This inhibitory pathway is opposed by thrombin, which inhibits the elevation of cAMP indirectly via autocrine activation of the Gi-coupled ADP receptor P2Y12. cAMP signaling is terminated by hydrolysis to biologically inert 5′-AMP by 3′-phosphodiesterases. Platelets express two cAMP phosphodiesterase isoforms, cGMP-stimulated PDE2 and cGMP-inhibited PDE3A. PDE3A is the most abundant isoform in platelets and has a ∼250-fold lower Km for cAMP than PDE2 (4). As a consequence of these properties, PDE3A exerts a greater influence on cAMP homeostasis, particularly at resting levels. The importance of PDE3A in platelet function is further emphasized by the finding that the PDE3A inhibitors cilostamide and milrinone raise basal cAMP levels and strongly inhibit thrombin-induced platelet activation (5). Furthermore, PDE3A-/- mice demonstrate increased resting levels of platelet cAMP and are protected against a model of pulmonary thrombosis (6). In contrast, the PDE2 inhibitor EHNA has no significant effect on cAMP levels and platelet aggregation (7, 8). The activity of PDE3A is therefore essential to maintain low equilibrium levels of cAMP and determine the threshold for platelet activation (7).Like its paralogue PDE3B, it has recently become clear that PDE3A activity can be positively regulated by phosphorylation in platelets and human oocytes (9, 10). There is some evidence that PKB may be involved in this regulation, although the phosphorylation sites are poorly characterized. In contrast, phosphorylation of PDE3A in HeLa cells was stimulated by phorbol esters and blocked by inhibitors of PKC (11). In this study, we aimed to identify the signaling pathways and phosphorylation sites that are involved in regulation of platelet PDE3A. Here, we show strong evidence that PKC, and not PKB, is involved in agonist-stimulated PDE3A phosphorylation on Ser312, Ser428, Ser438, Ser465, and Ser492, leading to an increase in PDE3A activity, 14-3-3 binding and modulation of intracellular cAMP levels.  相似文献   

13.
The cationic amphiphile, cholesteryl-3-carboxyamidoethylene-trimethylammonium iodide, can alter the substrate specificity of protein kinase C (PKC). The phosphorylation of histone catalyzed by PKC requires the binding of the enzyme to phospholipid vesicles. This cationic amphiphile reduces both the binding of PKC to lipid and as a consequence its rate of phosphorylation of histone. In contrast, PKC bound to large unilamellar vesicles (LUVs) composed of 50 mol % POPS, 20 mol % POPC, and 30 mol % of this amphiphile catalyzes protamine sulfate phosphorylation by an almost 4 fold greater rate. This activation requires phosphatidylserine (PS) and is inhibited by Ca2+. The extent of activation is affected by the time of incubation of PKC with LUVs. This data suggests a novel mechanism by which PKC-dependent signal transduction pathways may be altered by altering the protein targets of this enzyme.  相似文献   

14.
Previous work had demonstrated that organomercurial-mediated modification of two cysteine residues in the vesicular acetylcholine transporter (VAChT) from Torpedo californica inhibits binding of vesamicol. The cysteines are protected by acetylcholine and vesamicol (Keller et al. 2000. J. Neurochem. 74:1739–1748). Modified cysteine 1 is accessible to glutathione from the cytoplasmic surface, whereas modified cysteine 2 is not. Different organomercurials and aqueous environments were used here to characterize diffusion pathway(s) leading to the cysteines. para-Chloromercuriphenylsulfonate modifies VAChT much more slowly than do more hydrophobic p-chloromercuribenzoate and phenylmercury chloride. Permeabilization of vesicles with cholate detergent increases the rate of modification by p-chloromercuriphenylsulfonate. Permeabilization does not affect the ability of glutathione to reverse modification by p-chloromercuriphenylsulfonate. Higher ionic strength causes about four-fold increase in the rate of modification. The results suggest that hydrophobic and electrostatic barriers inhibit modification of Torpedo VAChT by negatively charged organomercurials and glutathione cannot reach cysteine 2 from either side of the membrane.  相似文献   

15.
These studies addressed the possible involvement between sensitivity to the hypnotic action of ethanol and function of the NMDA receptor. The studies were carried out using high-alcohol sensitive (HAS) and low-alcohol sensitive (LAS) rats, two rats having differential sensitivity to the acute hypnotic action of ethanol. The animal models were developed by a selective breeding experiment. Using a quantitative autoradiograph technique, it was demonstrated that [3H]MK-801 binding to the NMDA receptor was highest in hippocampus in both HAS and LAS rats, but significant [3H]MK-801 binding was also detected in cortex, caudate-putamen, and thalamus of HAS and LAS rats. The density of [3H]MK-801 binding was lower only in cerebellar granule layers of untreated HAS rats as compared to the same brain area in untreated LAS rats. Activation of protein kinase C (PKC) by 100 nM PDBu, increased [3H]MK-801 binding in cortex, caudate-putamen, thalamus, central gray, and cerebellum of HAS rats but activation of PKC did not influence [3H]MK-801 binding in LAS rats. These activation of PKC differentiates between [3H]MK-801 binding of HAS and LAS rats in frontal cortex (layer II-IV and cingulate), caudate-putamen, and ventral lateral thalamic nuclei. The basal level of PKC- mRNA was higher in HAS rats than that of LAS rats. These results suggest that the activation of PKC potentiates NMDA receptor function of the rat line which is more sensitive to alcohol (HAS) but does not affect [3H]MK-801 binding of alcohol resistant (LAS) rats.  相似文献   

16.
AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT1) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [3H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [125I]AngII to AT1 receptors was blocked by Ib in a concentration-dependent manner with IC50 value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.  相似文献   

17.
Summary The signaling pathways leading to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activation by N-formyl-Met-Leu-Phe (fMLP) or platelet activating factor (PAF) in human neutrophils were examined. Previously, we found that changes of intracellular Ca2+ ([Ca ) stimulated by PAF and fMLP were due to Ca2+ influx and internal Ca2+ release, respectively. To further determine the mechanism of MAPK activation and its relation with Ca2+ influx, blood from healthy human volunteers was taken by venous puncture. Human polymorphonuclear cells (PMNs) were isolated and incubated with protein kinase C (PKC) inhibitor Calphostin C, PKC- isoform inhibitor GF109203X, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, phospholipase C (PLC) inhibitor U73122, phospholipase A2 (PLA2) inhibitor Aristolochic acid, store-operated calcium (SOC) channel inhibitor SKF96365, or extracellular calcium chelator EGTA followed by fMLP or PAF treatment. Phosphorylation of ERK p38 was determined by immunoblotting analysis. Our data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK phosphorylation is mediated by PI3K, PKC, PLA2, PLC, and extracellular calcium, whereas fMLP-induced ERK phosphorylation does not involve the PKC- isoform and extracellular calcium. PAF-induced p38 phosphorylation involves PLA2, whereas fMLP-induced p38 activation is PLC dependent.  相似文献   

18.
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i)=20.5±5.6 and 13.8±1.2nM, respectively) than did vesamicol (K(i)=33.9±18.1nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73nM and a B(max) value of 164.4fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.  相似文献   

19.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

20.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号