首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-ribosylation factor (Arf) 6 regulates the movement of membrane between the plasma membrane (PM) and a nonclathrin-derived endosomal compartment and activates phosphatidylinositol 4-phosphate 5-kinase (PIP 5-kinase), an enzyme that generates phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show that PIP2 visualized by expressing a fusion protein of the pleckstrin homology domain from PLCdelta and green fluorescent protein (PH-GFP), colocalized with Arf6 at the PM and on tubular endosomal structures. Activation of Arf6 by expression of its exchange factor EFA6 stimulated protrusion formation, the uptake of PM into macropinosomes enriched in PIP2, and recycling of this membrane back to the PM. By contrast, expression of Arf6 Q67L, a GTP hydrolysis-resistant mutant, induced the formation of PIP2-positive actin-coated vacuoles that were unable to recycle membrane back to the PM. PM proteins, such as beta1-integrin, plakoglobin, and major histocompatibility complex class I, that normally traffic through the Arf6 endosomal compartment became trapped in this vacuolar compartment. Overexpression of human PIP 5-kinase alpha mimicked the effects seen with Arf6 Q67L. These results demonstrate that PIP 5-kinase activity and PIP2 turnover controlled by activation and inactivation of Arf6 is critical for trafficking through the Arf6 PM-endosomal recycling pathway.  相似文献   

2.
Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for <1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.  相似文献   

3.
Macropinocytosis is a clathrin‐independent endocytic pathway implicated in fluid uptake, pathogen invasion and cell migration. During collective cell migration, macropinocytosis occurs primarily at membrane ruffles arising from the leading edges of migrating cells. We report here that N‐cadherin (Ncad) regulates the tempo of macropinocytosis and thereby influences wound‐induced collective cell migration. Using live‐cell and super‐resolution imaging techniques, we observed that Ncad formed clusters at the membrane ruffles and macropinosomes. De‐clustering of Ncad by an interfering antibody impaired the recruitment of Rab5‐an early endosomal marker‐to the macropinosomes. Moreover, we demonstrated that Ncad interacts with Rab5, and laser ablation of Ncad caused Rab5 to dissociate from the macropinosomes. Although Rab5 detached from macropinosomes upon the de‐clustering of Ncad, the recruitment of late endosomal marker Rab7 occurred earlier. Consequently, both centripetal trafficking of macropinosomes and collective migration were accelerated due to de‐clustering of Ncad. Thus, our results suggest that Ncad is involved in the maturation of macropinocytosis through Rab5 recruitment, linking macropinocytosis and cell migration through a novel function of Ncad.   相似文献   

4.
Rab21, a member of the Rab GTPase family, is known to be involved in membrane trafficking, but its implication in macropinocytosis is unclear. We analyzed the spatiotemporal localization of Rab21 in M-CSF-stimulated RAW264 macrophages by the live-cell imaging of fluorescent protein-fused Rab21. It was demonstrated that wild-type Rab21 was transiently associated with macropinosomes. Rab21 was recruited to the macropinosomes after a decrease in PI(4,5)P2 and PI(3,4,5)P3 levels. Although Rab21 was largely colocalized with Rab5, the recruitment of Rab21 to the macropinosomes lagged a minute behind that of Rab5, and preceded that of Rab7. Then, Rab21 was dissociated from the macropinosomes prior to the accumulation of Lamp1, a late endosomal/lysosomal marker. Our analysis of Rab21 mutants revealed that the GTP-bound mutant, Rab21-Q78L, was recruited to the macropinosomes, similarly to wild-type Rab21. However, the GDP-bound mutant, Rab21-T33N, did not localize on the formed macropinosomes, suggesting that the binding of GTP to Rab21 is required for the proper recruitment of Rab21 onto the macropinosomes. However, neither mutation of Rab21 significantly affected the rate of macropinosome formation. These data indicate that Rab21 is a transient component of early and intermediate stages of macropinocytosis, and probably functions in macropinosome maturation before fusing with lysosomal compartments.  相似文献   

5.
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.  相似文献   

6.
Internalization of H-Ras from the cell surface onto endomembranes through vesicular endocytic pathways may play a significant role(s) in regulating the outcome of Ras signaling. However, the identity of Ras-associated subcellular vesicles and the means by which Ras localize to these internal sites remain elusive. In this study, we show that H-Ras is absent from endosomes initially derived from a clathrin-dependent endocytic pathway. Instead, both oncogenic H-Ras-61L and wild type H-Ras (basal or EGF-stimulated) bind Arf6-associated clathrin-independent endosomes and vesicles of the endosomal-recycling center (ERC). K-Ras4B-12V can also be internalized via Arf6 endosomes, and the C-terminal tails of both H-Ras and K-Ras4B are sufficient to mediate localization of GFP chimeras to Arf6-associated vesicles. Interestingly, little Raf-1 was found on these Arf6-associated endosomes even when active H-Ras was present. Instead, endogenous Raf-1 distributed primarily on EEA1-containing vesicles, suggesting that this H-Ras effector, although accessible for H-Ras interaction on the plasma membrane, appears to separate from its regulator during early stages of endocytosis. The discrete and dynamic distribution of Ras pathway components with spatio-temporal complexity may contribute to the specificity of Ras:effector interaction.  相似文献   

7.
The major group B coxsackievirus (CVB) receptor is a component of the epithelial tight junction (TJ), a protein complex that regulates the selective passage of ions and molecules across the epithelium. CVB enters polarized epithelial cells from the TJ, causing a transient disruption of TJ integrity. Here we show that CVB does not induce major reorganization of the TJ, but stimulates the specific internalization of occludin-a TJ integral membrane component-within macropinosomes. Although occludin does not interact directly with virus, depletion of occludin prevents CVB entry into the cytoplasm and inhibits infection. Both occludin internalization and CVB entry require caveolin but not dynamin; both are blocked by inhibitors of macropinocytosis and require the activity of Rab34, Ras, and Rab5, GTPases known to regulate macropinocytosis. Thus, CVB entry depends on occludin and occurs by a process that combines aspects of caveolar endocytosis with features characteristic of macropinocytosis.  相似文献   

8.
Mutations in the ALS2 gene cause a number of recessive motor neuron diseases, indicating that the ALS2 protein (ALS2/alsin) is vital for motor neurons. ALS2 acts as a guanine nucleotide exchange factor (GEF) for Rab5 (Rab5GEF) and is involved in endosome dynamics. However, the spatiotemporal regulation of the ALS2-mediated Rab5 activation is unclear. Here we identified an upstream activator for ALS2 and showed a functional significance of the ALS2 activation in endosome dynamics. ALS2 preferentially interacts with activated Rac1. In the cells activated Rac1 recruits cytoplasmic ALS2 to membrane ruffles and subsequently to nascent macropinosomes via Rac1-activated macropinocytosis. At later endocytic stages macropinosomal ALS2 augments fusion of the ALS2-localized macropinosomes with the transferrin-positive endosomes, depending on the ALS2-associated Rab5GEF activity. These results indicate that Rac1 promotes the ALS2 membranous localization, thereby rendering ALS2 active via Rac1-activated endocytosis. Thus, ALS2 is a novel Rac1 effector and is involved in Rac1-activated macropinocytosis. All together, loss of ALS2 may perturb macropinocytosis and/or the following membrane trafficking, which gives rise to neuronal dysfunction in the ALS2-linked motor neuron diseases.  相似文献   

9.
Rab2 immunolocalizes to pre-Golgi intermediates (vesicular-tubular clusters [VTCs]) that are the first site of segregation of anterograde- and retrograde-transported proteins and a major peripheral site for COPI recruitment. Our previous work showed that Rab2 Q65L (equivalent to Ras Q61L) inhibited endoplasmic reticulum (ER)-to-Golgi transport in vivo. In this study, the biochemical properties of Rab2 Q65L were analyzed. The mutant protein binds GDP and GTP and has a low GTP hydrolysis rate that suggests that Rab2 Q65L is predominantly in the GTP-bound-activated form. The purified protein arrests vesicular stomatitis virus glycoprotein transport from VTCs in an assay that reconstitutes ER-to-Golgi traffic. A quantitative binding assay was used to measure membrane binding of beta-COP when incubated with the mutant. Unlike Rab2 that stimulates recruitment, Rab2 Q65L showed a dose-dependent decrease in membrane-associated beta-COP when incubated with rapidly sedimenting membranes (ER, pre-Golgi, and Golgi). The mutant protein does not interfere with beta-COP binding but stimulates the release of slowly sedimenting vesicles containing Rab2, beta-COP, and p53/gp58 but lacking anterograde grade-directed cargo. To complement the biochemical results, we observed in a morphological assay that Rab2 Q65L caused vesiculation of VTCs that accumulated at 15 degrees C. These data suggest that the Rab2 protein plays a role in the low-temperature-sensitive step that regulates membrane flow from VTCs to the Golgi complex and back to the ER.  相似文献   

10.
Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.  相似文献   

11.
The GTPase Rab5a regulates the homotypic and heterotypic fusion of membranous organelles during the early stages of endocytosis. Many of the molecules which regulate the Rab5a cycle of association with membranes, activation, deactivation and dissociation are known. However, the extent to which these molecular scale activities are coordinated on membranes to affect the behavior of individual organelles has not been determined. This study used novel Förster resonance energy transfer (FRET) microscopic methods to analyze the Rab5a cycle on macropinosomes, which are large endocytic vesicles that form in ruffled regions of cell membranes. In Cos‐7 cells and mouse macrophages stimulated with growth factors, Rab5a activation followed immediately after its recruitment to newly formed macropinosomes. Rab5a activity increased continuously and uniformly over macropinosome membranes then decreased continuously, with Rab5a deactivation preceding dissociation by 1–12 min. Although the maximal levels of Rab5a activity were independent of organelle size, Rab5a cycles were longer on larger macropinosomes, consistent with an integrative activity governing Rab5a dynamics on individual organelles. The Rab5a cycle was destabilized by microtubule depolymerization and by bafilomycin A1. Overexpression of activating and inhibitory proteins indicated that active Rab5a stabilized macropinosomes. Thus, overall Rab5a activity on macropinosomes is coordinated by macropinosome structure and physiology.  相似文献   

12.
Cells accomplish the non-selective uptake of extracellular fluids, antigens and pathogens by the endocytic process of macropinocytosis. The protein SWAP-70 is a widely expressed, pleckstrin-homology (PH) domain-containing protein that marks a transitional subset of actin filaments in motile cells. Here we report that the protein SWAP-70 associates transiently with macropinosomes in dendritic cells and NIH/3T3 fibroblasts. The association of SWAP-70 with macropinosomes is preceded by the accumulation of Rac-GTP and followed by that of Rab5. Three regions of SWAP-70, the N-terminal region, the PH domain and the C-terminal region, contribute in a combinatorial manner to the transient association with newly formed macropinosomes in the cell periphery and occasionally with aged macropinosomes on their passage to the cell center. These data identify SWAP-70 as a transient component of early macropinosomes.  相似文献   

13.
The Ras small G protein-superfamily is a family of GTP hydrolases whose activity is regulated by GTP/GDP binding states. Rab6A, a member of the Ras superfamily, is involved in the regulation of vesicle trafficking, which is critical for endocytosis, biosynthesis, secretion, cell differentiation and cell growth. Rab6A exists in two isoforms, termed RabA and Rab6A′. Substitution of Gln72 to Leu72 (Q72L) at Rab6 family blocks GTP hydrolysis activity and this mutation usually causes the Rab6 protein to be constitutively in an active form. Here, we report the crystal structure of the human Rab6A′(Q72L) mutant form at 1.9 Å resolution. Unexpectedly, we found that Rab6A′(Q72L) possesses GDP/Mg2+ in the GTP binding pockets, which is formed by a flexible switch I and switch II. Large conformational changes were also detected in the switch I and switch II regions. Our structure revealed that the non-hydrolysable, constitutively active form of Rab6A′ can accommodate GDP/Mg2+ in the open conformation.  相似文献   

14.
23A2 myoblasts expressing GAP-resistant, constitutively active G12V:H-Ras (A2:G12V:H-Ras myoblasts) display a transformed morphology and do not undergo mitogen-deprivation-induced differentiation or the associated apoptosis. To determine the phenotype induced by F156L:H-Ras, a constitutively active mutant with enhanced nucleotide exchange activity rather than impaired GAP-stimulated GTPase activity, myoblast cell lines were established that stably express F156L:H-Ras at levels of H-Ras comparable to the A2:G12V:H-Ras myoblasts. These A2:F156L:H-Ras myoblast cell lines do not possess a transformed morphology, and while differentiation and apoptosis are impaired, these processes are not abrogated as in the A2:G12V:H-Ras myoblasts. Surprisingly, while expression of either G12V:H-Ras or F156L:H-Ras results in constitutive signaling through PI3-kinase, only cells expressing G12V:H-Ras additionally possess constitutive signaling through MAPK, and NFkappaB. Pharmacological abrogation of the Ras-induced constitutive PI3-kinase signal, however, is not responsible for the impaired differentiation or apoptosis in either A2:G12V:H-Ras myoblasts or A2:F156L:H-Ras myoblasts. Thus, our data suggest that a pathway distinct from those that signals through MAPK, NFkappaB or PI3-kinase is responsible for the impaired differentiation and apoptosis in 23A2 skeletal myoblasts expressing constitutively active Ras.  相似文献   

15.
Endocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wild-type Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and endocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.  相似文献   

16.
Salmonella virulence effectors elicit host cell membrane ruffling to facilitate pathogen invasion. The WAVE regulatory complex (WRC) governs the underlying membrane-localized actin polymerization, but how Salmonella manipulates WRC is unknown. We show that Rho GTPase activation by the Salmonella guanine nucleotide exchange factor (GEF) SopE efficiently triggered WRC recruitment but not its activation, which required host Arf GTPase activity. Invading Salmonella recruited and activated Arf1 to facilitate ruffling and uptake. Arf3 and Arf6 could also enhance invasion. RNAi screening of host Arf-family GEFs revealed a key role for ARNO in pathogen invasion and generation of pathogen-containing macropinosomes enriched in Arf1 and WRC. Salmonella recruited ARNO via Arf6 and the phosphoinositide phosphatase effector SopB-induced PIP3 generation. ARNO in turn triggered WRC recruitment and activation, which was dramatically enhanced when SopE and ARNO cooperated. Thus, we uncover a mechanism by which pathogen and host GEFs synergize to regulate WRC and trigger Salmonella invasion.  相似文献   

17.
Xie CG  Wei SM  Cai JT 《Cellular signalling》2012,24(2):524-531
Ras is known as an oncogene transferring signals from the plasma membrane. Recent studies have demonstrated that plasma membrane was not the unique platform for Ras signaling. Ras could also be endocytosed and transported to different endomembrane compartments, evoking different signal pathways there. It is of great significance to exploit the unique intracellular trafficking features of different Ras isoforms to develop new anti-Ras drugs. ADP-ribosylation factor 6 (Arf6) was known to mediate one of the clathrin-independent endocytosis (CIE) pathways. The role of Arf6 in K-Ras dynamic remains largely unknown. In this study, we showed that K-RasG12V co-localized with Arf6 at the plasma membrane, and entered the tubular endosomes or protrusions induced by cytochalasin D or aluminum fluoride in the same way as H-RasG12V does. A subcellular fractionation experiment demonstrated that Arf6 siRNA treatment reduced the plasma membrane presence of both endogenous Ras isoforms and inhibited the phosphorylation of Erk triggered by EGF. When co-expressed with Arf6Q67L, both isoforms were sequestered into the large phosphatidylinositol 4,5-biphosphate [PI(4,5)P2]-enriched vacuoles. However, when co-expressed with Arf6T27N, K-RasG12V co-localized with Arf6T27N at the tubular endosomes significantly than H-RasG12V. Immunoprecipitation and GST fusion protein pull-down studies found out for the first time that K-RasG12V interacted with Arf6T27N. Swapping mutation study showed that the above difference was due to different C-termini. Our study indicated that Arf6 was involved in the dynamic regulation of both Ras isoforms.  相似文献   

18.
The graph theory was combined with fluctuation dynamics to investigate the structural communication in four small G proteins, Arf1, H-Ras, RhoA, and Sec4. The topology of small GTPases is such that it requires the presence of the nucleotide to acquire a persistent structural network. The majority of communication paths involves the nucleotide and does not exist in the unbound forms. The latter are almost devoid of high-frequency paths. Thus, small Ras GTPases acquire the ability to transfer signals in the presence of nucleotide, suggesting that it modifies the intrinsic dynamics of the protein through the establishment of regions of hyperlinked nodes with high occurrence of correlated motions. The analysis of communication paths in the inactive (SGDP) and active (SGTP) states of the four G proteins strengthened the separation of the Ras-like domain into two dynamically distinct lobes, i.e. lobes 1 and 2, representing, respectively, the N-terminal and C-terminal halves of the domain. In the framework of this separation, interfunctional states and interfamily differences could be inferred. The structure network undergoes a reshaping depending on the bound nucleotide. Nucleotide-dependent divergences in structural communication reach the maximum in Arf1 and the minimum in RhoA. In Arf1, the nucleotide-dependent paths essentially express a communication between the G box 4 (G4) and distal portions of lobe 1. In the SGDP state, the G4 communicates with the N-term, while, in the SGTP state, the G4 communicates with the switch II. Clear differences could be also found between Arf1 and the other three G proteins. In Arf1, the nucleotide tends to communicate with distal portions of lobe 1, whereas in H-Ras, RhoA, and Sec4 it tends to communicate with a cluster of aromatic/hydrophobic amino acids in lobe 2. These differences may be linked, at least in part, to the divergent membrane anchoring modes that would involve the N-term for the Arf family and the C-term for the Rab/Ras/Rho families.  相似文献   

19.
To investigate the potential role of trimeric GTP-binding proteins regulating GLUT4 translocation in adipocytes, wild type and constitutively active G(q) (G(q)/Q209L), G(i) (G(i)/Q205L), and G(s) (G(s)/Q227L) alpha subunit mutants were expressed in 3T3L1 adipocytes. Although expression of neither the wild type nor G(i)/Q205L and G(s)/Q227L alpha subunit mutants had any effect on the basal or insulin-stimulated translocation of a co-expressed GLUT4-enhanced green fluorescent protein (EGFP) fusion protein, expression of G(q)/Q209L resulted in GLUT4-EGFP translocation in the absence of insulin. In contrast, microinjection of an inhibitory G(q)/G(11) alpha subunit-specific antibody but not a G(i) or G(s) alpha subunit antibody prevented insulin-stimulated endogenous GLUT4 translocation. Consistent with a required role for GTP-bound G(q)/G(11), expression of the regulators of G protein signaling (RGS4 and RGS16) also attenuated insulin-stimulated GLUT4-EGFP translocation. To assess the relationship between G(q)/G(11) function with the phosphatidylinositol 3-kinase dependent pathway, expression of a dominant-interfering p85 regulatory subunit, as well as wortmannin treatment inhibited insulin-stimulated but not G(q)/Q209L-stimulated GLUT4-EGFP translocation. Furthermore, G(q)/Q209L did not induce the in vivo accumulation of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), whereas expression of the RGS proteins did not prevent the insulin-stimulated accumulation of PIP(3). Together, these data demonstrate that insulin stimulation of GLUT4 translocation requires at least two independent signal transduction pathways, one mediated through the phosphatidylinositol 3-kinase and another through the trimeric GTP-binding proteins G(q) and/or G(11).  相似文献   

20.
In the process of receptor-mediated endocytosis, the fusion of endosomes in vitro is known to be inhibited by wortmannin or LY294002; inhibitors of phosphoinositide 3-kinase (PI3K), suggesting that the activity of PI3K is required for the fusion of early endosomes. In macropinocytosis, a process of bulk fluid-phase endocytosis, however, it remains unclear whether PI3K is required for the fusion of macropinosomes, since the macropinosome formation is inhibited by the PI3K inhibitors. In this study, we examined the effect of 3-methlyadenine (3-MA), which shows a distinct specificity to the PI3K classes from wortmannin and LY294002, on the macropinosome formation and fusion in EGF-stimulated A431 cells. Unlike wortmannin or LY294002, 3-MA did not inhibit the uptake of fluorescent dextran by macropinocytosis. However, the fusion of macropinosomes was inhibited by 3-MA. By imaging of live-cells expressing fluorescent protein-fused tandem FYVE domains, we found that PtdIns(3)P appeared on the macropinosomal membrane shortly after the closure of macropinocytic cups and remained on macropinosomes even at 60-min age. The production of PtdIns(3)P and the recruitment of EEA1 to macropinosomes were abolished by the 3-MA treatment. Therefore, it is likely that 3-MA impairs recruitment of EEA1 by inhibiting PtdIns(3)P production and resultantly blocks the fusion of macropinosomes. These results suggest that the local production of PtdIns(3)P implicates the fusion of macropinosomes via EEA1 as well as conventional early endosomes. However, the long association of PtdIns(3)P with macropinosomes may well be a cell-type specific feature of A431 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号