首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The secondary structure of DnaA protein and its interaction with DNA and ribonucleotides has been predicted using biochemical, biophysical techniques, and prediction methods based on multiple-sequence alignment and neural networks. The core of all proteins from the DnaA family consists of an “open twisted α/β structure,” containing five α-helices alternating with five β-strands. In our proposed structural model the interior of the core is formed by a parallel β-sheet, whereas the α-helices are arranged on the surface of the core. The ATP-binding motif is located within the core, in a loop region following the first β-strand. The N-terminal domain (80 aa) is composed of two α-helices, the first of which contains a potential leucine zipper motif for mediating protein-protein interaction, followed by a β-strand and an additional α-helix. The N-terminal domain and the α/β core region of DnaA are connected by a variable loop (45–70 aa); major parts of the loop region can be deleted without loss of protein activity. The C-terminal DNA-binding domain (94 aa) is mostly α-helical and contains a potential helix-loop-helix motif. DnaA protein does not dimerize in solution; instead, the two longest C-terminal α-helices could interact with each other, forming an internal “coiled coil” and exposing highly basic residues of a small loop region on the surface, probably responsible for DNA backbone contacts. © 1997 Wiley-Liss Inc.  相似文献   

4.
5.
6.
7.
8.
9.
The nucleotides in domain I of 18 S rRNA that are important for the binding of the essential yeast ribosomal protein YS11 are mainly in a kink-turn motif and the terminal loop of helix 11 (H11). In the atomic structure of the Thermus thermophilus 30 S subunit, 16 amino acids in S17, the homolog of YS11, are within hydrogen bonding distance of nucleotides in 16 S rRNA. The homologous or analogous 16 amino acids in YS11 were replaced with alanine; nine of the substitutions slowed the growth of yeast cells. The most severe effects were caused by mutations R103A, N106A, K133A, T134A, and K151A. The T. thermophilus analogs of Arg103, Asn106, Thr134, and Lys151 contact nucleotides in the kink-turn motif of 16 S rRNA, whereas Lys133 contacts nucleotides in the terminal loop of H11. These contacts are predominantly with backbone phosphate and sugar oxygens in regions that deviate from A-form geometry, suggesting that YS11 recognizes the shape of its rRNA-binding site rather than reading the sequence of nucleotides. The effect of the mutations on the binding of YS11 to a domain I fragment of 18 S rRNA accorded, in general, with their effect on growth. Mutations of seven YS11 amino acids (Ser77, Met80, Arg88, Tyr97, Pro130, Ser132, and Arg136) whose homologs or analogs in S17 are within hydrogen bonding distance of nucleotides in 16 S rRNA did not affect binding. Apparently, proximities alone do not define either the amino acids or the nucleotides that are important for recognition.  相似文献   

10.
Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ~25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-? resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96-115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region ((243)PFVPAPEVV(251)). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn(185) provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins.  相似文献   

11.
12.
Structural basis of replication origin recognition by the DnaA protein   总被引:7,自引:0,他引:7  
Escherichia coli DnaA binds to 9 bp sequences (DnaA boxes) in the replication origin, oriC, to form a complex initiating chromosomal DNA replication. In the present study, we determined the crystal structure of its DNA-binding domain (domain IV) complexed with a DnaA box at 2.1 Å resolution. DnaA domain IV contains a helix–turn–helix motif for DNA binding. One helix and a loop of the helix– turn–helix motif are inserted into the major groove and 5 bp (3′ two-thirds of the DnaA box sequence) are recognized through base-specific hydrogen bonds and van der Waals contacts with the C5-methyl groups of thymines. In the minor groove, Arg399, located in the loop adjacent to the motif, recognizes three more base pairs (5′ one-third of the DnaA box sequence) by base-specific hydrogen bonds. DNA bending by ~28° was also observed in the complex. These base-specific interactions explain how DnaA exhibits higher affinity for the strong DnaA boxes (R1, R2 and R4) than the weak DnaA boxes (R3 and M) in the replication origin.  相似文献   

13.
14.
15.
16.
17.
18.
To build up the structure of human BAD (Bcl-2 antagonist of cell death), subsequently combined with PKAc or PP1c (protein phosphatase 1), to investigate the interaction relationship between BAD and its kinase/PTPese at the molecular level. Additionally, it is concerned with the search for all optimal positions and orientations of a set of amino acid residues of BAD, while its binding sites include N-termini (Glu19, Ala27, and Ser34-Lys35), BH3-located helical domain (Arg98-Lys126), and C-termini (Trp154-Ser163 and Ser167-Gln168). The related sites of PKAc are mainly assembled in C-terminal α/β-domain of PKAc, which comprises the KTL motif (47-49), Glu203 residue, a helical region (Asp241-Arg256), and the span from 328 to 333; while the interaction sites with BAD converge at C-terminal β-domain of PP1c, which includes the DEK motif (166-168), the stretch from 179 to 197 including a helix (Glu184-Arg188), Glu230-Asp242 segment containing Val232-His237 helix, and Glu287-Leu289 loop. In conclusion, analysis of the complex between BAD and PKAc or PP1c provides a novel viewpoint on the structural origins of molecular recognition. And the complex models suggest that BH3 domain of BAD interact with PKAc or PP1c by electrostatic, van der Waals contacts, hydrogen bond and salt bridge. This is helpful for our development and research of some new drugs, especially mimetic BH3 peptides and inspires scientists with BAD complex and molecular mechanism of its integrating glycolysis and apoptosis.  相似文献   

19.
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called “peroxins,” which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the αL conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.  相似文献   

20.
Epstein-Barr virus is a human herpesvirus that causes infectious mononucleosis and lymphoproliferative malignancies. LMP1 (latent membrane protein-1), which is encoded by this virus and which is essential for transformation of B lymphocytes, acts as a constitutively active mimic of the tumor necrosis factor receptor (TNFR) CD40. LMP1 is an integral membrane protein containing six transmembrane segments and a cytoplasmic domain at the C terminus that binds to intracellular TNFR-associated factors (TRAFs). TRAFs are intracellular co-inducers of downstream signaling from CD40 and other TNFRs, and TRAF3 is required for activation of B lymphocytes by LMP1. Cytoplasmic C-terminal activation region 1 of LMP1 bears a motif (PQQAT) that conforms to the TRAF recognition motif PVQET in CD40. In this study, we report the crystal structure of this portion of LMP1 C-terminal activation region-1 (204PQQATDD210) bound in complex with TRAF3. The PQQAT motif is bound in the same binding crevice on TRAF3 where CD40 is bound, providing a molecular mechanism for LMP1 to act as a CD40 decoy for TRAF3. The LMP1 motif is presented in the TRAF3 crevice as a close structural mimic of the PVQET motif in CD40, and the intermolecular contacts are similar. However, the viral protein makes a unique contact: a hydrogen bond network formed between Asp210 in LMP1 and Tyr395 and Arg393 in TRAF3. This intermolecular contact is not made in the CD40-TRAF3 complex. The additional hydrogen bonds may stabilize the complex and strengthen the binding to permit LMP1 to compete with CD40 for binding to the TRAF3 crevice, influencing downstream signaling to B lymphocytes and contributing to dysregulated signaling by LMP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号