首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the resonance assignment of EDK-?-Bd37, conformational mutant potentially displaying the “open” conformation of Bd37, a 25 kDa surface protein from the Apicomplexa parasite Babesia divergens that could undergo drastic conformational changes during erythrocyte invasion.  相似文献   

2.
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by vesicular transport. In the ER, the catalytic CTA1 subunit dissociates from the holotoxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). It is hypothesized that CTA1 triggers its ERAD-mediated translocation into the cytosol by masquerading as a misfolded protein, but the process by which CTA1 activates the ERAD system remains unknown. Here, we directly assess the thermal stability of the isolated CTA1 polypeptide by biophysical and biochemical methods and correlate its temperature-dependent conformational state with susceptibility to degradation by the 20S proteasome. Measurements with circular dichroism and fluorescence spectroscopy demonstrated that CTA1 is a thermally unstable protein with a disordered tertiary structure and a disturbed secondary structure at 37 °C. A protease sensitivity assay likewise detected the temperature-induced loss of native CTA1 structure. This protease-sensitive conformation was not apparent when CTA1 remained covalently associated with the CTA2 subunit. Thermal instability in the dissociated CTA1 polypeptide could thus allow it to appear as a misfolded protein for ERAD-mediated export to the cytosol. In vitro, the disturbed conformation of CTA1 at 37 °C rendered it susceptible to ubiquitin-independent degradation by the core 20S proteasome. In vivo, CTA1 was also susceptible to degradation by a ubiquitin-independent proteasomal mechanism. ADP-ribosylation factor 6, a cytosolic eukaryotic protein that enhances the enzymatic activity of CTA1, stabilized the heat-labile conformation of CTA1 and protected it from in vitro degradation by the 20S proteasome. Thermal instability in the reduced CTA1 polypeptide has not been reported before, yet both the translocation and degradation of CTA1 may depend upon this physical property.  相似文献   

3.
The increase in human babesiosis is of major concern to health authorities. In the USA, most of these cases are due to infections with Babesia microti, whereas in Europe B. divergens is the major cause of clinical disease in humans. Here we review the immunological and biological literature of glycosylphosphatidylinositol (GPI)-anchored merozoite proteins of human Babesia parasites with emphasis on their role in immunity, and provide some new bioinformatical information on B. microti GPI-Anchored Proteins (GPI-AP). Cattle can be vaccinated with soluble parasite antigens (SPA) of Babesia divergens that are released by the parasite during proliferation. The major component in SPA preparations appeared to be a 37?kDa merozoite surface protein that is anchored in the merozoite membrane by a GPI anchor. Animals could be protected by vaccination with the recombinant 37?kDa protein expressed in Escherichia coli, provided the protein had a hydrophobic terminal sequence. Based on this knowledge, a recombinant vaccine was developed against Babesia canis infection in dogs, successfully. In order to identify similar GPI-AP in B. microti, the genome was analysed. Here it is shown that B. microti encodes all proteins necessary for GPI assembly and its subsequent protein transfer. In addition, in total 21 genes encoding for GPI-AP were detected, some of which reacted particularly strongly with sera from B. microti-infected human patients. Reactivity of antibodies with GPI-anchored merozoite proteins appears to be dependent on the structural conformation of the molecule. It is suggested that the three-dimensional structure of the protein that is anchored in the membrane is different from that of the protein that has been shed from the merozoite surface. The significance of this protein’s dynamics in parasite biology and immune evasion is discussed. Finally, we discuss developments in tick and Babesia vaccine research, and the role such vaccines could play in the control of human babesiosis.  相似文献   

4.
Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 °C, with spikes up to 84 °C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 Å resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrig's disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 Å resolution, suggesting a unified inner-sphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications.  相似文献   

5.
The 53-amino-acid trypsin inhibitor 1 from Nicotiana alata (T1) belongs to the potato type II family also known as the PinII family of proteinase inhibitors, one of the major families of canonical proteinase inhibitors. T1 contains four disulfide bonds, two of which (C4-C41 and C8-C37) stabilize the reactive-site loop. To investigate the influence of these two disulfide bonds on the structure and function of potato II inhibitors, we constructed two variants of T1, C4A/C41A-T1 and C8A/C37A-T1, in which these two disulfide bonds were individually removed and replaced by alanine residues. Trypsin inhibition assays show that wild-type T1 has a Ki of < 5 nM, C4A/C41A-T1 has a weaker Ki of ∼ 350 nM, and the potency of the C8A/C37A variant is further decreased to a Ki of ∼ 1.8 μM. To assess the influence of the disulfide bonds on the structure of T1, we determined the structure and dynamics of both disulfide variants by NMR spectroscopy. The structure of C4A/C41A-T1 and the amplitude of intrinsic flexibility in the reactive-site loop resemble that of the wild-type protein closely, despite the lack of the C4-C41 disulfide bond, whereas the timescale of motions is markedly decreased. The rescue of the structure despite loss of a disulfide bond is due to a previously unrecognized network of interactions, which stabilizes the structure of the reactive-site loop in the region of the missing disulfide bond, while allowing intrinsic motions on a fast (picosecond-nanosecond) timescale. In contrast, no comparable interactions are present around the C8-C37 disulfide bond. Consequently, the reactive-site loop becomes disordered and highly flexible in the structure of C8A/C37A-T1, making it unable to bind to trypsin. Thus, the reactive-site loop of T1 is stabilized differently by the C8-C37 and C4-C41 disulfide bonds. The C8-C37 disulfide bond is essential for the inhibitory activity of T1, whereas the C4-C41 disulfide bond is not as critical for maintaining the three-dimensional structure and function of the molecule but is responsible for maintaining flexibility of the reactive-site loop on a microsecond-nanosecond timescale.  相似文献   

6.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

7.
A lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum that shares only weak sequence similarity with characterized fungal lectins has recently been identified. S. sclerotiorum agglutinin (SSA) is a homodimeric protein consisting of two identical subunits of ∼ 17 kDa and displays specificity primarily towards Gal/GalNAc. Glycan array screening indicates that SSA readily interacts with Gal/GalNAc-bearing glycan chains. The crystal structures of SSA in the ligand-free form and in complex with the Gal-β1,3-GalNAc (T-antigen) disaccharide have been determined at 1.6 and 1.97 Å resolution, respectively. SSA adopts a β-trefoil domain as previously identified for other carbohydrate-binding proteins of the ricin B-like lectin superfamily and accommodates terminal non-reducing galactosyl and N-acetylgalactosaminyl glycans. Unlike other structurally related lectins, SSA contains a single carbohydrate-binding site at site α. SSA reveals a novel dimeric assembly markedly dissimilar to those described earlier for ricin-type lectins. The present structure exemplifies the adaptability of the β-trefoil domain in the evolution of fungal lectins.  相似文献   

8.
A phosphate-hydrolyzing activity from Glycine max embryo axes was purified by a series of chromatographic steps and electroelution from activity gels, and demonstrated to be an inositol-1 (or 4)-monophosphatase by partial internal amino acid sequence. This enzyme hydrolyzed ATP, sodium pyrophosphate (NaPPi), inositol hexakisphosphate, and inositol 1-monophosphate, but not p-nitrophenyl phosphate, ADP, AMP or glucose 6-P. Using NaPPi as substrate, the highly purified protein hydrolyzed up to 0.4 mmol phosphate min− 1 mg− 1 protein and had a Kmavg of 235 μM for NaPPi. Since NaPPi is relatively inexpensive and readily available, we used this as substrate for the subsequent characterization. We observed the following: (a) specific inhibition by Li and NaF but not by butanedione monoxime, or orthovanadate; (b) activation by Cu2+ and Mg2+; (c) optimum activity at pH 7.4; and (d) temperature stability after 1-h incubations at 37–80 °C, with maximum activity at 37 °C. The partially purified protein was detected by in-gel activity assays and the band was electroeluted to yield a highly purified protein. Analysis by SDS-PAGE and native IEF-PAGE yielded a single major polypeptide of 29 kDa and pI ∼ 5.9, respectively. In addition, in-gel activity from embryo axes and whole hypocotyls at early germination times revealed one high and one intermediate molecular weight isoform, but only the intermediate one corresponded to IMPase. Throughout the post-imbibition period, the activity of the high molecular weight isoform disappeared and IMPase increased, indicating an increasing expression of the enzyme as germination and growth proceeded. These data indicate that the inositol-1 (or 4)-monophosphatase present in the embryo axis of G. max has a wide phosphate substrate specificity, and may play an important role in phosphate metabolism during the germination process.  相似文献   

9.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

10.
An esterase (CpEst) showing high specific activities on tributyrin and short chain vinyl esters was obtained from Carica papaya latex after an extraction step with zwitterionic detergent and sonication, followed by gel filtration chromatography. Although the protein could not be purified to complete homogeneity due to its presence in high molecular mass aggregates, a major protein band with an apparent molecular mass of 41 kDa was obtained by SDS-PAGE. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (679 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 1029 bp encoding a protein of 343 amino acid residues, with a theoretical molecular mass of 38 kDa. From sequence analysis, CpEst was identified as a GDSL-motif carboxylester hydrolase belonging to the SGNH protein family and four potential N-glycosylation sites were identified. The putative catalytic triad was localised (Ser35-Asp307-His310) with the nucleophile serine being part of the GDSL-motif. A 3D-model of CpEst was built from known X-ray structures and sequence alignments and the catalytic triad was found to be exposed at the surface of the molecule, thus confirming the results of CpEst inhibition by tetrahydrolipstatin suggesting a direct accessibility of the inhibitor to the active site.  相似文献   

11.
The integral membrane protein complex, menaquinol:fumarate oxidoreductase (mQFR) has been purified, identified and characterized from the thermophilic green filamentous anoxygenic photosynthetic bacterium Chloroflexus aurantiacus. The complex is composed of three subunits: a 74 kDa flavoprotein that contains a covalently bound flavin adenine dinucleotide, a 28 kDa iron-sulfur cluster-containing polypeptide, and a 27 kDa transmembrane polypeptide, which is also the binding site of two b-type hemes and two menaquinones. The purified complex has an apparent molecular mass of 260 kDa by blue-native PAGE, which is indicative of a native homodimeric form. The isolated complex is active in vitro in both fumarate reduction and succinate oxidation. It has been analyzed by visible absorption, redox titration, chemical analysis and EPR spectroscopy. In addition, phylogenetic analysis shows that the QFR of both C. aurantiacus and Chlorobium tepidum are most closely related to those found in the delta-proteobacteria. The purified enzyme was crystallized and X-ray diffraction data obtained up to 3.2 Å resolution.  相似文献   

12.
The human proton-coupled folate transporter (HsPCFT, SLC46A1) mediates intestinal absorption of folates and transport of folates into the liver, brain and other tissues. On Western blot, HsPCFT migrates as a broad band (~ 55 kDa), higher than predicted (~ 50 kDa) in cell lines. Western blot analysis required that membrane preparations not be incubated in the loading buffer above 50 °C to avoid aggregation of the protein. Treatment of membrane fractions from HsPCFT-transfected HeLa cells with peptidyl N-glycanase F, or cells with tunicamycin, resulted in conversion to a ~ 35 kDa species. Substitution of asparagine residues of two canonical glycosylation sites to glutamine, individually, yielded a ~ 47 kDa protein; substitution of both sites gave a smaller (~ 35 kDa) protein. Single mutants retained full transport activity; the double mutant retained a majority of activity. Transport function and molecular size were unchanged when the double mutant was hemagglutinin (HA) tagged at either the NH2 or COOH terminus and probed with an anti-HA antibody excluding degradation of the deglycosylated protein. Wild-type or deglycosylated HsPCFT HA, tagged at amino or carboxyl termini, could only be visualized on the plasma membrane when HeLa cells were first permeabilized, consistent with the intracellular location of these domains.  相似文献   

13.
The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs) specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein) and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90%) of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.  相似文献   

14.
The Na+-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 (∼ 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated (∼ 68-90 kDa) with only 31-65% of WT l-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered (∼ 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at ∼ 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 °C or 37 °C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.  相似文献   

15.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   

16.
The abundant blue hemolymph protein of the last instar larvae of the moth Cerura vinula was purified and characterized by protein-analytical, spectroscopic and electron microscopic methods. Amino acid sequences obtained from a large number of cleavage peptides revealed a high level of similarity of the blue protein with arylphorins from a number of other moth species. In particular, there is a high abundance of the aromatic amino acids tyrosine and phenylalanine amounting to about 19% of total amino acids and a low content of methionine (0.8%) in the Cerura protein. The mass of the native protein complex was studied by size-exclusion chromatography, analytical ultracentrifugation, dynamic light scattering and scanning transmission electron microscopy and found to be around 500 kDa. Denaturating gel electrophoresis and mass spectrometry suggested the presence of two proteins with masses of about 85 kDa. The native Cerura protein is, therefore, a hexameric complex of two different subunits of similar size, as is known for arylphorins. The protein was further characterized as a weakly acidic (pI ∼ 5.5) glycoprotein containing mannose, glucose and N-acetylglucosamine in an approximate ratio of 10:1:1. The structure proposed for the most abundant oligosaccharide of the Cerura arylphorin was the same as already identified in arylphorins from other moths. The intense blue colour of the Cerura protein is due to non-covalent association with a bilin of novel structure at an estimated protein subunit-to-ligand ratio of 3:1. Transmission electron microscopy of the biliprotein showed single particles of cylindrical shape measuring about 13 nm in diameter and 9 nm in height. A small fraction of particles of the same diameter but half the height was likely a trimeric arylphorin dissociation intermediate. Preliminary three-dimensional reconstruction based on averaged transmission electron microscopy projections of the individual particles revealed a double-trimeric structure for the hexameric Cerura biliprotein complex, suggesting it to be a dimer of trimers.  相似文献   

17.
The nematode surface coat is defined as an extracuticular component on the outermost layer of the nematode body wall, visualized only by electron microscopy. Surface coat proteins of Meloidogyne incognita race 3 infective juveniles were characterized by electrophoresis and Western blotting of extracts from radioiodine and biotin-labeled nematodes. Extraction of labeled nematodes with cetyltrimethylammonium bromide yielded a principal protein band larger than 250 kDa and, with water soluble biotin, several faint bands ranging from 31 kDa to 179 kDa. The pattern of labeling was similar for both labeling methods. Western blots of unlabeled proteins were probed with a panel of biotin-lectin conjugates, but only Concanavalin A bound to the principal band. Nematodes labeled with radioiodine and biotin released ¹²⁵I and biotin-labeled molecules into water after 20 hours incubation, indicating that surface coat proteins may be loosely attached to the nematode. Antiserum to the partially purified principal protein bound to the surface of live nematodes and to several proteins on Western blots. Differential patterns of antibody labeling were obtained on immuno-blots of extracts from M. incognita race 1, 2, and 3; Meloidogyne hapla race 2; and Meloidogyne arenaria cytological race B.  相似文献   

18.
Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3'' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an α-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks.  相似文献   

19.
The β‐subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α‐ and γ‐subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL‐heEF1β), N‐terminus (NT‐heEF1β), and the C‐terminus (CT‐heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha‐helical and possesses an accessible hydrophobic cavity in the CT‐heEF1β. Both FL‐heEF1β and NT‐heEF1β form dimers of size 62 and 30 kDa, respectively, but the CT‐heEF1β is monomeric. FL‐heEF1β interacts with the N‐terminus glutathione transferase‐like domain of heEF1γ (NT‐heEF1γ) to form a 195‐kDa complex or a 230‐kDa complex in the presence of oxidized glutathione. On the other hand, NT‐heEF1β forms a 170‐kDa complex with NT‐heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL‐heEF1β associated with monomeric or dimeric NT‐heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD = 9.6 nM for monomeric or 11.3 nM for dimeric NT‐heEF1γ). We postulate that the N‐terminus region of heEF1β may be responsible for its dimerization and the C‐terminus region of heEF1β modulates the formation of an ordered heEF1β‐γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.  相似文献   

20.
The evolutionarily conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in the fusion of vesicles with their target membranes. While most SNAREs are permanently anchored to membranes by their transmembrane domains, the vesicle-associated SNARE Ykt6 has been found both in soluble and in membrane-bound pools. The R-SNARE Ykt6 is thought to mediate interactions between various Q-SNAREs by a reversible membrane-targeting cycle. Membrane attachment of Ykt6 is achieved by its C-terminal prenylation and palmitoylation motif succeeding the SNARE motif. In this study, we have analyzed full-length farnesylated Ykt6 from yeast and humans by biochemical and structural means. In vitro farnesylation of the C-terminal CAAX box of recombinant full-length Ykt6 resulted in stabilization of the native protein and a more compactly folded structure, as shown by size exclusion chromatography and limited proteolysis. Circular dichroism spectroscopy indicated a specific increase in the helical content of the farnesylated Ykt6 compared to the nonlipidated form or the single-longin domain, which correlated with a marked increase in stability as observed by heat denaturation experiments. Although highly soluble, farnesylated Ykt6 is capable of lipid membrane binding independent of the membrane charge, as shown by surface plasmon resonance. The crystal structure of the N-terminal longin domain of yeast Ykt6 (1-140) was determined at 2.5 Å resolution. As similarly found in a previous NMR structure, the Ykt6 longin domain contains a hydrophobic patch at its surface that may accommodate the lipid moiety. In the crystal structure, this hydrophobic surface is buried in a crystallographic homomeric dimer interface. Together, these observations support a previously suggested closed conformation of cytosolic Ykt6, where the C-terminal farnesyl moiety folds onto a hydrophobic groove in the N-terminal longin domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号