首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, the transfer of the sulfur atom between cysteine and homocysteine, the direct precursor of methionine, is ensured by two chloroplastic enzymes, cystathionine γ-synthase and cystathionine β-lyase. These proteins have been purified to homogeneity from spinach chloroplasts and their biochemical properties determined. Cystathionine γ-synthase and cystathionine β-lyase are tetramers and are typical pyridoxal 5′-phosphate-dependent proteins. These enzymes are targets for the potent inhibitors of methionine synthesis that are lethal for plants. An Arabidopsis thaliana cDNA encoding chloroplastic cystathionine β-lyase was isolated by functional complementation of a bacterial mutant and cloned in a pET expression vector in order to transform Escherichia coli cells. Preliminary observations of the active site of the purified recombinant enzyme have been performed by characterization of the interaction between i) pyridoxal 5′-phosphate and the polypeptide chain, and ii) the active site-directed inhibitor aminoethoxyvinylglycine and the bound cofactor. This study will be developed further by crystallographic analyses.  相似文献   

2.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   

3.
The previously published procedure (Kraus et al. (1978) J. Biol. Chem.253, 6523–6528) for the purification of cystathionine β-synthase [l-serine hydro-lyase (adding homocysteine) EC 4.2.1.22], a pyridoxal 5′-phosphate-dependent enzyme from human liver has been modified. The new procedure, starting with a liver homogenate “aged” for 7 days at 4 °C, yielded homogeneous enzyme purified over 3000-fold with a much improved yield. “Aging” of the enzyme in crude homogenates yields a form apparently smaller by gel electrophoresis and with significantly increased activity and antigenicity. This species of cystathionine β-synthase does not form stable complexes with other proteins during purification as does the previously employed, freshly used species. An absorption spectrum and an amino acid composition of the pure enzyme were determined; the amino-terminal residue was shown to be methionine. The isoelectric points of holosynthase and aposynthase were estimated to be 5.2 and 5.6, respectively. Rabbit antiserum raised against the pure cystationine β-synthase was characterized using as antigen crude synthase from five different mammalian species as well as the pure human enzyme.  相似文献   

4.
5.
6.
YrdD, a homolog of the C-terminal zinc-binding region of Escherichia coli topoisomerase I, is highly conserved among proteobacteria and enterobacteria. However, the function of YrdD remains elusive. Here we report that YrdD purified from E. coli cells grown in LB media contains both zinc and iron. Supplement of exogenous zinc in the medium abolishes the iron binding of YrdD in E. coli cells, indicating that iron and zinc may compete for the same metal binding sites in the protein. While the zinc-bound YrdD is able to bind single-stranded (ss) DNA and protect ssDNA from the DNase I digestion in vitro, the iron-bound YrdD has very little or no binding activity for ssDNA, suggesting that the zinc-bound YrdD may have an important role in DNA repair by interacting with ssDNA in cells.  相似文献   

7.
The Mu phage virion contains tail-spike proteins beneath the baseplate, which it uses to adsorb to the outer membrane of Escherichia coli during the infection process. The tail spikes are composed of gene product 45 (gp45), which contains 197 amino acid residues. In this study, we purified and characterized both the full-length and the C-terminal domains of recombinant gp45 to identify the functional and structural domains. Limited proteolysis resulted in a Ser64-Gln197 sequence, which was composed of a stable C-terminal domain. Analytical ultracentrifugation of the recombinant C-terminal domain (gp45-C) indicated that the molecular weight of gp45-C was about 58 kDa and formed a trimeric protomer in solution. Coprecipitation experiments and a quartz crystal microbalance (QCM) demonstrated that gp45-C irreversibly binds to the E. coli membrane. These results indicate that gp45 shows behaviors similar to tail-spike proteins of other phages; however, gp45 did not show significant sequence homology with the other phage tail-spike structures that have been identified.  相似文献   

8.
In this paper, we describe the expression and characterization of recombinant human cystathionine β-synthase (CBS) in Escherichia coli. We have used a glutathione-S-transferase (GST) fusion protein vector and incorporated a cleavage site with a long hinge region which allows for the independent folding of CBS and its fusion partner. In addition, our construct has the added benefit of yielding a purified CBS which only contains one extra glycine amino acid residue at the N-terminus. In our two-step purification procedure we are able to obtain a highly pure enzyme in sufficient quantities for crystallography and other physical chemical methods. We have investigated the biochemical and catalytic properties of purified full-length human CBS and of two truncation mutants lacking the C-terminal domain or both the N-terminal heme-binding and the C-terminal regulatory regions. Specifically, we have determined the pH optima of the different CBS forms and their kinetic and spectral properties. The full-length and the C-terminally truncated enzyme had a broad pH 8.5 optimum while the pH optimum of the N- and C- terminally truncated enzyme was sharp and shifted to pH 9. Furthermore, we have shown unequivocally that CBS binds one mole of heme per subunit by determining both the heme and the iron content of the enzyme. The activity of the enzyme was unaffected by the redox status of the heme iron. Finally, we show that CBS is stimulated by S-adenosyl- l-methionine but not its analogs.  相似文献   

9.
冯姗  张耀洲 《昆虫学报》2006,49(5):726-732
锌带蛋白(zinc ribbon protein )是锌指类蛋白的一种,它的Cys4 Zn(2+)结合位点由3个β2片层折叠而成,而不是α螺旋结构。锌带结构与锌指结构同为转录因子结合核酸的结构域,锌带蛋白作为转录相关因子在调节基因表达活性等方面具有重要作用。在对家蚕 Bombyx mori蛹cDNA文库测序中,发现一个新的编码家蚕锌带蛋白基因的EST序列(GenBank 登录号DY230964),以此序列为信息探针检索家蚕EST数据库,通过同源筛选,获得一个新的家蚕锌带蛋白基因cDNA全序列并经RT-PCR检测和克隆、测序验证,结果表明与电子克隆序列完全一致。我们将其命名为 BmZNRD1 (Zinc Ribbon Domain Containing 1)(GenBank登录号DQ432055)。该基因全长为675 bp,由363 bp的开放阅读框序列(ORF)、10 bp的5′端非翻译区序列(5′UTR)和302 bp 的3′端非编码区序列(3′ UTR)组成,其编码的120个氨基酸序列与其他真核生物间具有较高的同源性(达60%左右),预测分子量为13.54 kD, 等电点为6.8。BmZNRD1编码的氨基酸序列是一种锌带蛋白,推测有2个功能结构域,分别是位于N-端的Cx2Cx14Cx2C和C-端的Cx2Cx24Cx2C,其中C-端保守氨基酸序列Cx2Cx6Yx3QxRSADEx2TxFx2Cx2C在生物进化中保守性很高,从酵母、果蝇、线虫到两栖类、哺乳类都有发现该结构域的存在,与酵母RNA聚合酶A亚单位9和转录相关蛋白有很高的相似性,推测其具有相同的功能。将BmZNRD1基因cDNA序列与家蚕基因组序列进行比对,结果表明该基因具有3个外显子,2个内含子,外显子/内含子边界符合经典的GT-AG规则。 关键词: 家蚕; 锌带蛋白基因; 电子克隆; 基因克隆; 序列分析  相似文献   

10.
A protocol for the identification of N-homocysteinylation sites in plasma proteins is described. Human plasma or purified fibrinogen is subjected to trypsin digestion and analysis of N-Hcy-peptides by liquid chromatography/mass spectroscopy (LC/MS). Human fibrinogen is isolated from the plasma by the glycine precipitation method. Identification of N-Hcy-Lys-peptides in tryptic digests of in vivo-derived samples is facilitated by the use of N-Hcy-albumin and N-Hcy-fibrinogen synthesized in vitro from commercially available human proteins. This protocol allows identification of N-homocysteinylation sites at Lys4, Lys12, Lys137, and Lys525 in albumin directly in trypsin-digested human serum samples. N-Hcy-Lys562, N-Hcy-Lys344, and N-Hcy-Lys385 were identified in human fibrinogen from patients with cystathionine β-synthase deficiency. The protocol can be completed in 4 days.  相似文献   

11.
A gene library of the Leptospira meyeri serovar semaranga strain Veldrat S.173 DNA has been constructed in a mobilizable cosmid with inserts of up to 40 kb. It was demonstrated that a Leptospira DNA fragment carrying metY complemented Escherichia coli strains carrying mutations in metB. The latter gene encodes cystathionine γ-synthase, an enzyme which catalyzes the second step of the methionine biosynthetic pathway. The metY gene is 1,304 bp long and encodes a 443-amino-acid protein with a molecular mass of 45 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The deduced amino acid sequence of the Leptospira metY product has a high degree of similarity to those of O-acetylhomoserine sulfhydrylases from Aspergillus nidulans and Saccharomyces cerevisiae. A lower degree of sequence similarity was also found with bacterial cystathionine γ-synthase. The L. meyeri metY gene was overexpressed under the control of the T7 promoter. MetY exhibits an O-acetylhomoserine sulfhydrylase activity. Genetic, enzymatic, and physiological studies reveal that the transsulfuration pathway via cystathionine does not exist in L. meyeri, in contrast to the situation found for fungi and some bacteria. Our results indicate, therefore, that the L. meyeri MetY enzyme is able to perform direct sulfhydrylation for methionine biosynthesis by using O-acetylhomoserine as a substrate.  相似文献   

12.
Escherichia coli topoisomerase I (TopA) cleaves and rejoins one strand of double-stranded DNA to relax the negatively supercoiled DNA. Structurally, TopA contains an N-terminal catalytic fragment and a C-terminal zinc-binding region that is required for relaxation of the negatively supercoiled DNA. Here we report that E. coli TopA is an iron and zinc binding protein. The UV–Vis absorption measurements and metal content analyses reveal that TopA purified from E. coli cells grown in the rich LB medium contains both iron and zinc. However, TopA purified from E. coli cells grown in the M9 minimal medium has negligible amounts of zinc or iron and no topoisomerase activity. Nevertheless, supplement of exogenous zinc or iron in E. coli cells grown in the M9 minimal medium produces the zinc- or iron-bound TopA, respectively. Whereas the zinc-bound TopA is fully active to relax the negatively supercoiled DNA, the iron-bound TopA has little or no enzyme activity. Furthermore, excess iron in the M9 minimal medium is able to compete with the zinc binding in TopA in E. coli cells and attenuate the topoisomerase activity, suggesting that E. coli TopA may be modulated by iron and zinc binding in vivo.  相似文献   

13.
ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the cluster 9 group of ATP-binding cassette-type periplasmic Zn- and Mn-binding proteins. In Gram-negative bacteria, the ZnuABC system is essential for zinc uptake and homeostasis and is an important determinant of bacterial resistance to the host defense mechanisms. The cluster 9 members share a two (α/β)4 domain architecture with a long α-helix connecting the two domains. In the Zn-specific proteins, the so-called α3c and the α4 helices are separated by an insert of variable length, rich in histidine and negatively charged residues. This distinctive His-rich loop is proposed to play a role in the management of zinc also due to its location at the entrance of the metal binding site located at the domain interface. The known Synechocystis 6803 and Escherichia coli ZnuA structures show the same metal coordination involving three conserved histidines and a glutamic acid or a water molecule as fourth ligand. The structures of Salmonella enterica ZnuA, with a partially or fully occupied zinc binding site, and of a deletion mutant missing a large part of the His-rich loop revealed unexpected differences in the metal-coordinating ligands, as histidine 140 from the mobile (at the C-terminal) part of the loop substitutes the conserved histidine 60. This unforeseen coordination is rendered possible by the “open conformation” of the two domains. The possible structural determinants of these peculiarities and their functional relevance are discussed.  相似文献   

14.
Here we present the crystal structure of the Methanococcus jannaschii RelE-RelB (RelBE) toxin-antitoxin (TA) protein complex determined by the MIRAS (multiple isomorphous replacement with anomalous signal) method. The genes encoding this TA system are located in the chromosome of this archaeon and involved in stress response. RelE acts as an endoribonuclease that cleaves mRNA on the ribosome, and we compare the RelBE complex to the known structures of other TA systems belonging to this group and to endoribonucleases. M. jannaschii RelBE forms a heterotetramer with the antitoxin in the centre of the complex, a configuration that differs vastly from the heterotetramer structure of the previously published RelBE from another archaeon, Pyrococcus horikoshii. The long N-terminal α-helix of the tightly bound M. jannaschii antitoxin RelB covers the presumed active site of the toxin RelE that is formed by a central β-sheet, a loop on one side and a C-terminal α-helix on the other side. The active site of the M. jannaschii toxin RelE harbours positive charges that are thought to neutralize the negative charges of the substrate mRNA, including Arg62 that was changed to Ser62 by the Escherichia coli expression system, thereby leading to inactive toxin RelE. Comparative studies suggest that Asp43 and His79 are also involved in the activity of the toxin.  相似文献   

15.
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6–8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246–2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with KD values of 60 ± 20 pm and 110 ± 40 nm, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.  相似文献   

16.
Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet.  相似文献   

17.
The cystine/glutamate transporter, designated as system xc, is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system xc, xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues, such as the thymus and spleen. Although cystine and glutamate are the well established substrates of system xc and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analyzed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged as being absent specifically in the thymus and spleen of xCT-deficient mice. No expression of either cystathionine β-synthase or cystathionine γ-lyase was observed in the thymus and spleen of mice. In embryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knock-out cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system xc and that the accumulation of cystathionine in immune tissues is exclusively mediated by system xc.  相似文献   

18.
19.
Tail-anchored (TA) proteins represent a unique class of membrane proteins that contain a single C-terminal transmembrane helix. The post-translational insertion of the yeast TA proteins into the ER membrane requires the Golgi ER trafficking (GET) complex which contains Get1, Get2 and Get3. Get3 is an ATPase that recognizes and binds the C-terminal transmembrane domain (TMD) of the TA proteins. We have determined the crystal structures of Get3 from two yeast species, S. cerevisiae and D. hansenii, respectively. These high resolution crystal structures show that Get3 contains a nucleotide-binding domain and a “finger” domain for binding the TA protein TMD. A large hydrophobic groove on the finger domain of S. cerevisiae Get3 structure might represent the binding site for TMD of TA proteins. A hydrophobic helix from a symmetry-related Get3 molecule sits in the TMD-binding groove and mimics the TA binding scenario. Interestingly, the crystal structures of the Get3 dimers from S. cerevisiae and D. hansenii exhibit distinct conformations. The S. cerevisiae Get3 dimer structure does not contain nucleotides and maintains an “open” conformation, while the D. hansenii Get3 dimer structure binds ADP and stays in a “closed” conformation. We propose that the conformational changes to switch the Get3 between the open and closed conformations may facilitate the membrane insertions for TA proteins.  相似文献   

20.
Lo SC  Hamer L  Hamer JE 《Eukaryotic cell》2002,1(2):311-314
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine β-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号