首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the μ-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the μ-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the μ-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.  相似文献   

2.
A family of Clostridium perfringens glycoside hydrolases (CpGH84A-E), with a conserved family 84 catalytic module, are thought to target the gastric mucosal layer. Chemical shift assignments have been completed for a putative protein-protein interaction X82 module from CpGH84C.  相似文献   

3.
Many carbohydrate-active enzymes have complex architectures comprising multiple modules that may be involved in catalysis, carbohydrate binding, or protein-protein interactions. Carbohydrate-binding modules (CBMs) are a common ancillary module whose function is to promote the adherence of the complete enzyme to carbohydrate substrates. CBM family 32 has been proposed to be one of the most diverse CBM families classified to date, yet all of the structurally characterized CBM32s thus far recognize galactose-based ligands. Here, we report a unique binding specificity and mode of ligand binding for a family 32 CBM. NagHCBM32-2 is one of four CBM32 modules in NagH, a family 84 glycoside hydrolase secreted by Clostridium perfringens. NagHCBM32-2 has the β-sandwich scaffold common to members of the family; however, its specificity for N-acetylglucosamine is unusual among CBMs. X-ray crystallographic analysis of the module at resolutions from 1.45 to 2.0 Å and in complex with disaccharides reveals that its mode of sugar recognition is quite different from that observed for galactose-specific CBM32s. This study continues to unravel the diversity of CBMs found in family 32 and how these CBMs might impart the carbohydrate-binding specificity to the extracellular glycoside hydrolases in C. perfringens.  相似文献   

4.
Carbohydrate-binding modules (CBMs) are ancillary modules commonly associated with carbohydrate-active enzymes (CAZymes) that function to mediate the adherence of the parent enzyme to its carbohydrate substrates. CBM family 32 (CBM32) is one of the most diverse CBM families, whose members are commonly found in bacterial CAZymes that modify eukaryotic glycans. One such example is the putative μ-toxin, CpGH84A, of the family 84 glycoside hydrolases, which comprises an N-terminal putative β-N-acetylglucosaminidase catalytic module and four tandem CBM32s. Here, we report a unique mode of galactose recognition by the first CBM32, CBM32-1 from CpGH84A. Solution NMR-based analyses of CpGH84A CBM32-1 indicate a divergent subset of residues, located in ordered loops at the apex of the CBM, conferring specificity for the galacto-configured sugars galactose, GalNAc, and LacNAc that differs from those of the canonical galactose-binding CBM32s. This study showcases the impressive variability in ligand binding by this CBM family and offers insight into the growing role of these modules in the interaction of CAZymes with eukaryotic glycans.  相似文献   

5.
Cellulosomes are cellulolytic complexes produced by anaerobic bacteria, and are composed of a scaffolding protein and several catalytic components. The complexes are formed by highly specific interactions of one of the reiterated cohesin modules of the scaffolding protein with a dockerin module of the catalytic components. The affinities of a dockerin module of Clostridium thermocellum CelJ (Cel9D-Cel44A) for several cohesin modules from C. thermocellum and Clostridium josui scaffolding proteins were quantitatively measured by surface plasmon resonance analysis. The recombinant CelJ dockerin-containing protein interacted with three recombinant C. josui cohesin proteins as well as recombinant C. thermocellum cohesin proteins beyond the so-called 'species specificity' of the dockerin and cohesin interactions. However, this protein did not recognize a second cohesin module from the C. josui scaffolding protein, suggesting that the catalytic components are not necessarily arranged randomly on a scaffolding protein in native cellulosomes.  相似文献   

6.
The cellulosome complex is composed of a conglomerate of subunits, each of which comprises a set of interacting functional modules. Scaffoldin (Sca), a major cellulosomal subunit, is responsible for organizing the cellulolytic subunits into the complex. This is accomplished by the interaction of two complementary classes of modules—a cohesin (Coh) module on the Sca subunit and a dockerin module on each of the enzymatic subunits. Although individual Coh modules from different cellulosomal scaffoldins have been subjected to intensive structural investigation, the Sca subunit in its entirety has not, and there remains a paucity of information on the arrangement and interactions of Cohs within the Sca subunit. In the present work, we describe the crystal structure of a type II Coh dyad from the ScaB “adaptor” Sca of Acetivibrio cellulolyticus. The ScaB Cohs are oriented in an “antiparallel” manner relative to one another, with their dockerin-interacting surfaces (β-strands 8-3-6-5) facing the same direction—aligned on the same plane. A set of extensive hydrophobic and hydrogen-bond contacts between the Cohs and the short interconnecting linker segment between them stabilizes the modular orientation. This Coh dyad structure provides novel information about Coh-Coh association and arrangement in the Sca and further insight into intermodular linker interactions. Putative structural arrangements of a hexamodular complex, composed of the Coh dyad bound to two X-dockerin modules, were suggested.  相似文献   

7.
In the assembly of the Clostridium cellulolyticum cellulosome, the multiple cohesin modules of the scaffolding protein CipC serve as receptors for cellulolytic enzymes which bear a dockerin module. The X-ray structure of a type I C. cellulolyticum cohesin module (Cc-cohesin) has been solved using molecular replacement, and refined at 2.0 A resolution. Despite a rather low sequence identity of 32 %, this module has a fold close to those of the two Clostridium thermocellum cohesin (Ct-cohesin) modules whose 3D structures have been determined previously. Cc-cohesin forms a dimer in the crystal, as do the two Ct-cohesins. We show here that the dimer exists in solution and that addition of dockerin-containing proteins dissociates the dimer. This suggests that the dimerization interface and the cohesin/dockerin interface may overlap. The nature of the overall surface and of the dimer interface of Cc-cohesin differ notably from those of the Ct-cohesin modules, being much less polar, and this may explain the species specificity observed in the cohesin/dockerin interaction of C. cellulolyticum and C. thermocellum. We have produced a topology model of a C. cellulolyticum dockerin and of a Cc-cohesin/dockerin complex using homology modeling and available biochemical data. Our model suggests that a special residue pair, already identified in dockerin sequences, is located at the center of the cohesin surface putatively interacting with the dockerin.  相似文献   

8.
The high-affinity cohesin–dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.  相似文献   

9.
Clostridial cellulosomes are cellulolytic complexes that are formed by highly specific interactions between one of the repeated cohesin modules present in the scaffolding protein and a dockerin module of the catalytic components. Although Clostridium thermocellum Xyn11A dockerin has a typical C. thermocellum dockerin sequence, in which two amino acid residues are species specifically conserved within the two segments of the dockerin modules, it can recognize Clostridium josui cohesin modules in a non-species-specific manner. The importance of these two conserved amino acids, which are part of the recognition site of the cohesin and dockerin interaction, was investigated by introducing mutations into the first and/or the second segments of the Xyn11A dockerin. Mutations in the first segment did not affect the interactions between dockerin and C. thermocellum and C. josui cohesins. However, mutations in the second segment prevented binding to cohesin proteins. A second round of mutations within the first segment re-established the affinity for both the C. thermocellum and the C. josui cohesins. However, this was not observed for a 'conventional' dockerin, Xyn10C. These results suggest that the combination of the first and second dockerin segments is important for the target recognition.  相似文献   

10.
Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification.  相似文献   

11.
Cellulosomes are highly elaborate multi-enzyme complexes of Carbohydrate Active enZYmes (CAZYmes) secreted by cellulolytic microorganisms, which very effectively degrade the most abundant polymers on Earth, cellulose and hemicelluloses. Cellulosome assembly requires that a non-catalytic dockerin module found in cellulosomal enzymes binds to one of the various cohesin domains located in a large molecular scaffold called Scaffoldin. A diversity of cohesin–dockerin binding specificities have been described, the combination of which may result in complex plant cell wall degrading systems, maximising the synergy between enzymes in order to improve catalytic efficiency. Structural studies have allowed the spatial flexibility inherent to the cellulosomal system to be determined. Recent progress achieved from the study of the fundamental cohesin and dockerin units involved in cellulosome assembly will be reviewed.  相似文献   

12.
The μ-toxin of Clostridium perfringens, termed CpGH84A, is modular hydrolytic enzyme that contributes to the pathogenicity of this organism. Backbone and side chain 1H, 13C, and 15N resonance assignments have been determined for the C-terminal 15.5 kDa FIVAR-Doc modular pair of CpGH84A.  相似文献   

13.
Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.  相似文献   

14.
Cohesin and dockerin domains are critical assembling components of cellulosome, a large extracellular multienzyme complex which is used by anaerobic cellulolytic bacteria to efficiently degrade lignocellulose. According to sequence homology, cohesins can be divided into three major groups, whereas cohesins from Clostridium acetobutylicum are beyond these groups and emanate from a branching point between the type I and type III cohesins. Cohesins and dockerins from C. acetobutylicum show low sequence homology to those from other cellulolytic bacteria, and their interactions are specific in corresponding species. Therefore the interactions between cohesins and dockerins from C. acetobutylicum are meaningful to the studies of both cellulosome assembling mechanism and the construction of designer cellulosome. Here we report the NMR resonance assignments of one cohesin from cellulosome scaffoldin cipA and one dockerin from a cellulosomal glycoside hydrolase (family 9) of C. acetobutylicum for further structural determination and functional studies.  相似文献   

15.
We have sequenced a new gene, cel9B, encoding a family-9 cellulase from a cellulosome-producing bacterium, Acetivibrio cellulolyticus. The gene includes a signal peptide, a family-9 glycoside hydrolases (GH9) catalytic module, two family-3 carbohydrate-binding modules (CBM3c-CBM3b tandem dyad) and a C-terminal dockerin module. An identical modular arrangement exists in two putative GH9 genes from the draft sequence of the Clostridium thermocellum genome. The three homologous CBM3b modules from A. cellulolyticus and C. thermocellum were overexpressed, but, surprisingly, none bound cellulosic substrates. The results raise fundamental questions concerning the possible role(s) of the newly described CBMs. Phylogenetic analysis and preliminary site-directed mutagenesis studies suggest that the catalytic module and the CBM3 dyad are distinctive in their sequences and are proposed to constitute a new GH9 architectural theme.  相似文献   

16.
Chan AK  Wang YY  Ng KL  Fu Z  Wong WK 《Gene》2012,493(1):52-61
A novel cellobiase gene, designated cba3, was cloned from Cellulomonas biazotea. Although cellobiase genes of C. biazotea were previously cloned, published and/or patented, they encoded β-glucosidases all belonging to glycoside hydrolase family 3 (GH3); the new Cba3 cellobiase was identified to be a glycoside hydrolase family 1 (GH1) member, which represents the first discovered GH1 β-glucosidase of C. biazotea. Escherichia coli transformants expressing recombinant Cba3 were shown to grow readily in minimal media using cellobiose as the sole carbon source, supporting the conclusion that Cba3 is a genuine cellobiase. The full-length cba3 gene was revealed by sequencing to be 1344 bp long. Cba3 deletants lacking either the N-terminal 10 amino acids or the C-terminal 10 residues were found to be biologically inactive, supporting the importance of both ends in catalysis. Like other GH1 β-glucosidases, Cba3 was shown to contain the highly conserved NEP and ENG motifs, which are crucial for enzymatic activity. Despite lacking a classical N-terminal signal peptide, Cba3 was demonstrated to be a secretory protein. The findings that Cba3 is a cellobiase, and that it was expressed well as an extracellular protein in E. coli, support the potential of Cba3 for use with other cellulases in the hydrolysis of cellulosic biomass.  相似文献   

17.
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.  相似文献   

18.
Cellulosomes are large, multienzyme, plant cell wall-degrading protein complexes found affixed to the surface of a variety of anaerobic microbes. The core of the cellulosome is a noncatalytic scaffoldin protein, which contains several type-I cohesin modules that bind type-I dockerin-containing enzymatic subunits, a cellulose-binding module, an X module, and a type-II dockerin that interacts with type-II cohesin-containing cell surface proteins. The unique arrangement of the enzymatic subunits in the cellulosome complex, made possible by the scaffoldin subunit, promotes enhanced substrate degradation relative to the enzymes free in solution. Despite representative high-resolution structures of all of the individual modules of the cellulosome, this mechanism of enzymatic synergy remains poorly understood. Consequently, a model of the entire cellulosome and a detailed picture of intermodular contacts will provide more detailed insight into cellulosome activity. Toward this goal, we have solved the structure of a multimodular heterodimeric complex from Clostridium thermocellum composed of the type-II cohesin module of the cell surface protein SdbA bound to a trimodular C-terminal fragment of the scaffoldin subunit CipA to a resolution of 1.95 Å. The linker that connects the ninth type-I cohesin module and the X module has elevated temperature factors, reflecting an inherent flexibility within this region. Interestingly, a novel dimer interface was observed between CipA and a second, symmetry-related CipA molecule within the crystal structure, mediated by contacts between a type-I cohesin and an X module of a symmetry mate, resulting in two intertwined scaffoldins. Sedimentation velocity experiments confirmed that dimerization also occurs in solution. These observations support the intriguing possibility that individual cellulosomes can associate with one another via inter-scaffoldin interactions, which may play a role in the mechanism of action of the complex.  相似文献   

19.
Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn37 show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background.  相似文献   

20.
A novel cellulosomal scaffoldin gene, termed cipV, was identified and sequenced from the mesophilic cellulolytic anaerobe Acetivibrio cellulolyticus. Initial identification of the protein was based on a combination of properties, including its high molecular weight, cellulose-binding activity, glycoprotein nature, and immuno-cross-reactivity with the cellulosomal scaffoldin of Clostridium thermocellum. The cipV gene is 5,748 bp in length and encodes a 1,915-residue polypeptide with a calculated molecular weight of 199,496. CipV contains an N-terminal signal peptide, seven type I cohesin domains, an internal family III cellulose-binding domain (CBD), and an X2 module of unknown function in tandem with a type II dockerin domain at the C terminus. Surprisingly, CipV also possesses at its N terminus a catalytic module that belongs to the family 9 glycosyl hydrolases. Sequence analysis indicated the following. (i) The repeating cohesin domains are very similar to each other, ranging between 70 and 90% identity, and they also have about 30 to 40% homology with each of the other known type I scaffoldin cohesins. (ii) The internal CBD belongs to family III but differs from other known scaffoldin CBDs by the omission of a 9-residue stretch that constitutes a characteristic loop previously associated with the scaffoldins. (iii) The C-terminal type II dockerin domain is only the second such domain to have been discovered; its predicted "recognition codes" differ from those proposed for the other known dockerins. The putative calcium-binding loop includes an unusual insert, lacking in all the known type I and type II dockerins. (iv) The X2 module has about 60% sequence homology with that of C. thermocellum and appears at the same position in the scaffoldin. (v) Unlike the other known family 9 catalytic modules of bacterial origin, the CipV catalytic module is not accompanied by a flanking helper module, e.g., an adjacent family IIIc CBD or an immunoglobulin-like domain. Comparative sequence analysis of the CipV functional modules with those of the previously sequenced scaffoldins provides new insight into the structural arrangement and phylogeny of this intriguing family of microbial proteins. The modular organization of CipV is reminiscent of that of the CipA scaffoldin from C. thermocellum as opposed to the known scaffoldins from the mesophilic clostridia. The phylogenetic relationship of the different functional modules appears to indicate that the evolution of the scaffoldins reflects a collection of independent events and mechanisms whereby individual modules and other constituents are incorporated into the scaffoldin gene from different microbial sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号