首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological toxicity of uranyl ion (UO22+) lies in interacting with proteins and disrupting their native functions. The structural and functional consequences of UO22+ interacting with cytochrome b 5 (cyt b 5), a small membrane heme protein, and its heme axial ligand His39Ser variant, cyt b 5 H39S, were investigated both experimentally and theoretically. In experiments, although cyt b 5 was only slightly affected, UO22+ binding to cyt b 5 H39S with a K D of 2.5 μM resulted in obvious alteration of the heme active site, and led to a decrease in peroxidase activity. Theoretically, molecular simulation proposed a uranyl ion binding site for cyt b 5 at surface residues of Glu37 and Glu43, revealing both coordination and hydrogen bonding interactions. The information gained in this study provides insights into the mechanism of uranyl toxicity toward membrane protein at an atomic level.  相似文献   

2.
In the photosynthetic bacterium, Rhodobacter sphaeroides, the mobile electron carrier, cytochrome c2 (cyt c2) transfers an electron from reduced heme to the photooxidized bacteriochlorophyll dimer in the membrane bound reaction center (RC) as part of the light induced cyclic electron transfer chain. A complex between these two proteins that is active in electron transfer has been crystallized and its structure determined by X-ray diffraction. The structure of the cyt:RC complex shows the cyt c2 (cyt c2) positioned at the center of the periplasmic surface of the RC. The exposed heme edge from cyt c2 is in close tunneling contact with the electron acceptor through an intervening bridging residue, Tyr L162 located on the RC surface directly above the bacteriochlorophyll dimer. The binding interface between the two proteins can be divided into two regions: a short-range interaction domain and a long-range interaction domain. The short-range domain includes residues immediately surrounding the tunneling contact region around the heme and Tyr L162 that display close intermolecular contacts optimized for electron transfer. These include a small number of hydrophobic interactions, hydrogen bonds and a pi-cation interaction. The long-range interaction domain consists of solvated complementary charged residues; positively charged residues from the cyt and negatively charged residues from the RC that provide long range electrostatic interactions that can steer the two proteins into position for rapid association.  相似文献   

3.
The effect of water-splitting Mn complex on light-induced redox changes of cytochrome b 559 (cyt b 559) was studied in spinach photosystem II (PSII) membranes. Photoreduction of the heme iron in the intact PSII membranes was completely suppressed by DCMU, whereas photoreduction and photooxidation of the heme iron in the Mn-depleted PSII membranes were unaffected by DCMU. Interesingly, photoreduction and photooxidation of the heme iron in the Mn-depleted PSII membranes were completely diminished by exogenous superoxide dismutase (SOD), whereas no effect of SOD on photoreduction of the heme iron was observed in the intact PSII membranes. The current work shows that the light-induced redox changes of cyt b 559 proceed via a different mechanism in the both types of PSII membranes. In the intact PSII membranes, photoreduction of the heme iron is mediated by plastoquinol. However, in the Mn-depleted PSII membranes, photoreduction and photooxidation of the heme iron are mediated by superoxide anion radical formed in PSII.  相似文献   

4.
In the genome of the untypical cyanobacterium Gloeobacter violaceus PCC 7421 two potential cytochrome b 6 proteins PetB1 and PetB2 are encoded. Such a situation has not been observed in cyanobacteria, algae and higher plants before, and both proteins are not characterized at all yet. Here, we show that both apo-proteins bind heme with high affinity and the spectroscopic characteristics of both holo-proteins are distinctive for cytochrome b 6 proteins. However, while in PetB2 one histidine residue, which corresponds to H100 and serves as an axial ligand for heme b H in PetB1, is mutated, both PetB proteins bind two heme molecules with different midpoint potentials. To recreate the canonical heme b H binding cavity in PetB2 we introduced a histidine residue at the position corresponding to H100 in PetB1 and subsequently characterized the generated protein variant. The presented data indicate that two bona fide cytochrome b 6 proteins are encoded in Gloeobacter violaceus. Furthermore, the two petB genes of Gloeobacter violaceus are each organized in an operon together with a petD gene. Potential causes and consequences of the petB and petD gene heterogeneity are discussed.  相似文献   

5.
6.
7.
Bovine liver cytochrome b 5 (cyt b 5), with heme bound noncovalently, has been converted into a cyt c-like protein (cyt b 5 N57C) by constructing a thioether linkage between the heme and the engineered cysteine residue. With no X-ray or NMR structure available, we herein performed a molecular modeling study of cyt b 5 N57C. On the other hand, using amino acid sequence information for a newly discovered member of the cyt b 5 family, domestic silkworm cyt b 5 (DS cyt b 5), we predicted the protein structure by homology modeling in combination with MD simulation. The modeling structure shows that both Cys57 in cyt b 5 N57C, and Cys56, a naturally occurring cysteine in DS cyt b 5, have suitable orientations to form a thioether bond with the heme 4-vinyl group, as the heme is in orientation A. In addition to providing structural information that was not previously obtained experimentally, these modeling studies provide insight into the formation of cyt c-like thioether linkages in cytochromes, and suggest that c-type cyt b 5 maturation involves a b-type intermediate.  相似文献   

8.
The cytochrome (cyt) c′, cyt c556, and cyt c2 genes from Rhodopseudomonas palustris have been cloned; recombinant cyt c′ and cyt c556 have been expressed, purified, and characterized. Unlike mitochondrial cyt c, these two proteins are structurally similar to cyt b562, in which the heme is embedded in a four-helix bundle. The hemes in both recombinant proteins form covalent thioether links to two Cys residues. UV/vis spectra of the FeII and FeIII states of the recombinant cyts are identical with those of the corresponding native proteins. Equilibrium unfolding measurements in guanidine hydrochloride solutions confirm that native FeII-cyt c556 is more stable than the corresponding state of FeIII-cyt c556 (ΔΔGf°=22 kJ/mol).  相似文献   

9.
Bashtovyy D  Bérczi A  Asard H  Páli T 《Protoplasma》2003,221(1-2):31-40
Summary.  Atomic models possessing the common structural features identified for the cytochrome b 561 (cyt b 561) protein family are presented. A detailed and extensive sequence analysis was performed in order to identify and characterize protein sequences in this family of transmembrane electron transport proteins. According to transmembrane helix predictions, all sequences contain 6 transmembrane helices of which 2–6 are located closely in the same regions of the 26 sequences in the alignment. A mammalian (Homo sapiens) and a plant (Arabidopsis thaliana) sequence were selected to build 3-dimensional structures at atomic detail using molecular modeling tools. The main structural constraints included the 2 pairs of heme-ligating His residues that are fully conserved in the family and the lipid-facing sides of the helices, which were also very well conserved. The current paper proposes 3-dimensional structures which to our knowledge are the first ones for any protein in the cyt b 561 family. The highly conserved His residues anchoring the two hemes on the cytoplasmic side and noncytoplasmic side of the membrane are in all proteins located in the transmembrane helices 2, 4 and 3, 5, respectively. Several highly conserved amino acids with aromatic side chain are identified between the two heme ligation sites. These residues may constitute a putative transmembrane electron transport pathway. The present study demonstrates that the structural features in the cyt b 561 family are well conserved at both the sequence and the protein level. The central 4-helix core represents a transmembrane electron transfer architecture that is highly conserved in eukaryotic species. Received May 12, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biophysics, Biological Research Centre, P.O. Box 521, 6701 Szeged, Hungary. E-mail: tpali@nucleus.szbk.u-szeged.hu  相似文献   

10.

Background  

Cytochrome b 5 performs central roles in various biological electron transfer reactions, where difference in the redox potential of two reactant proteins provides the driving force. Redox potentials of cytochromes b 5 span a very wide range of ~400 mV, in which surface charge and hydrophobicity around the heme moiety are proposed to have crucial roles based on previous site-directed mutagenesis analyses.  相似文献   

11.
Cytochrome b5 (cyt b5) is an amphipathic membrane-bound heme protein found in the endoplasmic reticulum of eukaryotes. It consists of three domains, an N-terminal cytosolic, hydrophilic domain containing the heme, a short flexible linker and an α-helical membrane-spanning domain. This study investigated whether there are specific side chain helix–helix packing interactions between the COOH-terminal membrane anchor of cyt b5 and cytochrome P450 (cyt P450) 2B4 in a purified reconstituted system. Alanine was inserted at six positions in the membrane anchor of cyt b5. Insertion of alanine into an α-helix causes all amino acids at its carboxyl terminus to be rotated by 100°. The ability of the alanine insertion mutants of cyt b5 to bind to cyt P450 2B4 was similar to that of the wild-type protein as was the ability of the mutant cyts b5 to stimulate the metabolism of the anesthetic, methoxyflurane. These results demonstrate that the C-terminal hydrophobic α-helix of cyt b5 does not interact with cyt P450 2B4 through a specific stereochemical fit of amino acid side chains, but rather through nonspecific interactions.  相似文献   

12.
Yeast flavocytochrome b 2 tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b 2. Each subunit of the soluble tetrameric enzyme consists of an N terminal b 5-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b 2 domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b 2 functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b 5-like domain is fused to proteins carrying other redox functions.  相似文献   

13.
The two cytochromes (cyt) b558 of acidic nature, one—95–100 kDa and another one, 60–70 kDa were isolated for the first time from the human’s lymphosarcoma tissue cells using gel filtration and ion exchange chromatography. These hemoproteins possess NADPH dependent O2 -producing and ferrihemoglobin-reducing activities. The incubation of neuropeptide PRP-1 (5 μg) with cytochrome b558, caused elevation of these activities. The gel filtration results indicated possible binding of PRP-1 to these cytochromes b558. PRP-1 activated both NADPH dependent O2 -producing and ferriHb-reducing activities of the cyt b1 558 and cyt b2 558, obtained from human lymphosarcoma tissue cells. One can assume that PRP-1 associated with cyt b558 on the surface of the tumor cells by increasing both NADPH dependent O2 -producing and ferriHb-reducing activities of cyt b558, increases the oxidation- reduction status. Changing the oxidation–reduction status and oxygen homeostasis of the tumor cells by PRP-1 can serve as one of the possible explanation of antitumorigenic effect of this cytokine.  相似文献   

14.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

15.
Cytochrome c 6 , (cyt c 6) a soluble monoheme electron transport protein, was isolated and characterized from the chlorophyll d-containing cyanobacterium Acaryochoris marina, the type strain MBIC11017. The protein was purified using ammonium sulfate precipitation, ion exchange and gel filtration column chromatography, and fast performance liquid chromatography. Its molecular mass and pI have been determined to be 8.87 kDa and less than 4.2, respectively, by mass spectrometry and isoelectrofocusing (IEF). The protein has an alpha helical structure as indicated by CD (circular dichroism) spectroscopy and a reduction midpoint potential (E m) of +327 mV versus the normal hydrogen electrode (NHE) as determined by redox potentiometry. Its potential role in electron transfer processes is discussed.  相似文献   

16.
Adrenal cytochrome b561 (cyt b561), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b561 (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (bH) peak were seen with mutation of His92; the largest changes in the low-potential (bL) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g = 3.1 signal (bH) but not the g = 3.7 signal (bL). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the bH transition; mutations in His110 produced the largest decreases in ΔA561 for the bL transition. These results indicate that His92 can be considered part of the bH heme center, and His110 part of the bL heme center, in adrenal cyt b561.  相似文献   

17.
The cytochrome b 6 f (Cyt b 6 f) complex, which functions as a plastoquinol-plastocyanin oxidoreductase and mediates the linear electron flow between photosystem II (PSII) and photosystem I (PSI) and the cyclic electron flow around PSI, was isolated from spinach (Spinacia oleracea L.) chloroplasts using n-octyl-β-D-glucopyranoside (β-OG). The preparation was also able to catalyze the peroxidase-like reaction in the presence of hydrogen peroxide (H2O2) and guaiacol. The optimal conditions for peroxidase activity of the preparation included: pH 3.6, ionic strength 0.1, and temperature 35°C. The apparent Michaelis constant (K m) values for H2O2 and guaiacol were 50 mM and 2 mM, respectively. The bimolecular rate constant (k obs) was about 26 M−1 s−1 and the turnover number (K cat) was about 60 min−1 (20 mM guaiacol, 100 mM sodium phosphate, pH 3.6, 25°C, [H2O2]<100mM). These parameters were similar to those of several other heme-containing proteins, such as myoglobin and Cyt c.  相似文献   

18.
To understand the role of the structural elements of cytochrome b 5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b 5 — microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b 5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b 5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b 5 are mainly determined by the structure of the hemebinding domain.  相似文献   

19.
At the heart of the Q cycle hypothesis, the cytochrome bc1 complex (bc1) is required to separate the two electrons from a quinol molecule at the quinol oxidation site. Recent studies have brought to light an intricate mechanism for this bifurcated electron transfer. A survey of the protein data bank shows 30 entries for the structures of bc1 and the homologous b6 f complex. These structures provide considerable insights into the structural organization of mitochondrial, bacterial, and plant enzymes. Crystallographic binding studies of bc1 with either quinone reduction (QN) and/or quinol oxidation (QP) site inhibitors offer atomic details on how these compounds interact with residues at their respective sites. Most importantly, the different locations and apparent flexibility observed in crystals for the extrinsic domain of the iron-sulfur protein (ISP) subunit suggest a mechanism for electron bifurcation at the QP site. Analyses of various inhibitor-bound structures revealed two classes of QP site inhibitors: Pm inhibitors that promote ISP mobility and Pf inhibitors that favor the fixation of the ISP conformation. Those analyses also shed light on a possible process by which the ISP motion switch is controlled. The first phase reduction of ISP is shown to be comparable to the reduction of the bL heme by pre-steady state kinetic analysis, whereas the second phase reduction of ISP share similar kinetics with the reduction of the bH heme. The reduction of cyt c1 is measured much slower, indicating that the reduced ISP remains bound at the QP site until the reduced heme bL is oxidized by the heme bH and supporting the existence of a control mechanism for the ISP motion switch.  相似文献   

20.
The amino acid at position 51 in the cytochrome c 6 family is responsible for modulating over 100 mV of heme midpoint redox potential. As part of the present work, the X-ray structure of the imidazole adduct of the photosynthetic cytochrome c 6 Q51V variant from Phormidium laminosum has been determined. The structure reveals the axial Met ligand is dissociated from the heme iron but remains inside the heme pocket and the Ω-loop housing the Met ligand is stabilized through polar interactions with the imidazole and heme propionate-6. The latter is possible owing to a 180° rotation of both heme propionates upon imidazole binding. From equilibrium and kinetic studies, a Val residue at position 51 increases the stability of the Fe–S(Met) interaction and also affects the dynamics associated with imidazole binding. In this respect, the k obs for imidazole binding to Arabidopsis thaliana cytochrome c 6A, which has a Val at the position equivalent to position 51 in photosynthetic cytochrome c 6, was found to be independent of imidazole concentration, indicating that the binding process is limited by the Met dissociation rate constant (about 1 s−1). For the cytochrome c 6 Q51V variant, imidazole binding was suppressed in comparison with the wild-type protein and the V52Q variant of cytochrome c 6A was found to bind imidazole readily. We conclude that the residue type at position 51/52 in the cytochrome c 6 family is additionally responsible for tuning the stability of the heme iron–Met bond and the dynamic properties of the ferric protein fold associated with endogenous ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号