首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The total lipid and free fatty acid contents of Isotricha intestinalis, Entodinium simplex, and the rumen bacterial flora of the respective protozoa were determined. Warburg manometric data showed that the sodium salts of tributyrin, oleic, and acetic acids stimulated gas production in I. intestinalis, whereas tributyrin was stimulatory with E. simplex and less active with oleic and acetic acids. Rumen bacteria provided fatty acids produced lower manometric gaseous increases when compared with the protozoa. Volatile fatty acids were produced by I. intestinalis and rumen bacteria with tributyrin, but not with tripalmitin. Sodium oleate gave little volatile fatty acid response with I. intestinalis or rumen bacteria. Washed suspensions of I. intestinalis and rumen bacteria concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Autoradiographs demonstrated the conversion of C14-labeled oleic, palmitic, stearic, linoleic, and acetic acids in the rumen protozoa and bacterial cells.  相似文献   

2.
Eight strains of cellulolytic cocci were isolated from a 10-8 dilution of rumen ingesta and were presumptively identified as Ruminococcus flavefaciens. Four strains were isolated from a steer fed a purified diet which contained isolated soy protein, and four strains were isolated from a steer fed a purified diet which contained urea. Certain growth factor requirements of these bacteria were determined. All strains grew with clarified rumen fluid added to the medium. However, fatty acids could substitute for rumen fluid in four strains. Two strains isolated from each steer either required or their growth was stimulated by isobutyric and/or isovaleric and/or 2-methyl-butyric acid. These results indicate that, even when a diet was fed which contained no branched-chain amino acids, the carbon skeleton precursors of branched-chain fatty acids, the cattle were still able to maintain a large population of cellulolytic bacteria that require fatty acids for growth. Therefore, the fatty acids appear to be provided by other bacteria, by protozoa, or by the host animal.  相似文献   

3.
Summary The cellular long-chain fatty acids of 69 strains of yeasts, representing 29 species associated with the brewing industry, were extracted by saponification and analyzed asmethyl esters by gas chromatography. The strains were characterized by the presence of palmitic, palmitoleic, stearic, oleic, linoleic and linolenic acid as the major fatty acids. The strains were divided into six groups on the basis of their fatty acid content. With this method it was possible to differentiate between the yeasts on species and, in some instances, on strain level.  相似文献   

4.
By anaerobic procedures, the total number of adherent bacteria was determined on tissue samples obtained from the roof of the dorsal rumen of three sheep. After four washings, 1.91 × 107, 0.34 × 107, and 1.23 × 107 bacteria per cm2 were still attached to the rumen epithelium in sheep 1, 2, and 3, respectively. A total of 95 strains of bacteria were isolated from these three samples. Based on morphology, Gram stain, anaerobiosis, motility, and fermentation end products, they were presumptively identified as follows: Butyrivibrio fibrisolvens, 30 strains; atypical Butyrivibrio, 5 strains; Bacteroides ruminicola, 22 strains; Lactobacillus, 1 strain; and unknown Bacteroides species, 37 strains. For sheep 3, washing the rumen epithelium a total of 10 times reduced the adherent bacterial population by 93% (8.4 × 105 bacteria per cm2). Of 30 strains isolated from this sample, 22 were presumptively identified as Butyrivibrio and Bacteroides types. These results suggest that the epithelium on the roof of the dorsal rumen is primarily colonized by two genera of bacteria, Butyrivibrio and Bacteroides. Most Butyrivibrio and Bacteroides ruminicola strains appeared to be similar to previously isolated rumen strains. However, the unknown Bacteroides species differed considerably from the three species of this genus which are commonly isolated from rumen contents.  相似文献   

5.
Isolated rumen bacteria were examined for growth and, where appropriate, for their ability to degrade cellulose in the presence of the hydroxycinnamic acids trans-p-coumaric acid and trans-ferulic acid and the hydroxybenzoic acids vanillic acid and 4-hydroxybenzoic acid. Ferulic and p-coumaric acids proved to be the most toxic of the acids examined and suppressed the growth of the cellulolytic strains Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes when included in a simple sugars medium at concentrations of >5 mM. The extent of cellulose digestion by R. flavefaciens and B. succinogenes but not R. albus was also substantially reduced. Examination of rumen fluid from sheep maintained on dried grass containing 0.51% phenolic acids showed the presence of phloretic acid (0.1 mM) and 3-methoxyphloretic acid (trace) produced by hydrogenation of the 2-propenoic side chain of p-coumaric and ferulic acids, respectively. The parent acids were found in trace amounts only, although they represented the major phenolic acids ingested. Phloretic and 3-methoxyphloretic acids proved to be considerably less toxic than their parent acids. All of the cellulolytic strains (and Streptococcus bovis) showed at least a limited ability to hydrogenate hydroxycinnamic acids, with Ruminococcus spp. proving the most effective. No further modification of hydroxycinnamic acids was produced by the single strains of bacteria examined. However, a considerable shortfall in the recovery of added phenolic acids was noted in media inoculated with rumen fluid. It is suggested that hydrogenation may serve to protect cellulolytic strains from hydroxycinnamic acids.  相似文献   

6.
The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.  相似文献   

7.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

8.
Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5–200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.  相似文献   

9.
To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.  相似文献   

10.
AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.  相似文献   

11.
Summary Solid animal fats aggregated when first added to aqueous media and strong agitation was necessary to accomplish and maintain their dispersion. The growth rate of Saccharomycopsis lipolytica accelerated as fat dispersion proceeded until similar rates of exponential growth were attained with either lard, mutton tallow or beef tallow as sole carbon source. The major fatty acids in all substances were oleic, palmitic, and stearic. A major proportion of both saturated acids were consumed during the yeast's growth on animal fats, but the growth rates were greatly reduced after exhaustion of the preferentially consumed unsaturated acid. At this time, substantial amounts of saturated acids, present both as free fatty acid and in glycerides, remained. The amounts of these residual acids were markedly affected by the distribution of acyl groups within the original triglycerides. With individual fatty acids as the sole carbon source, the yeast grew at comparable rates on palmitic and oleic acids but did not grow on stearic acid.  相似文献   

12.
13.
In order to evaluate whether dietary long‐chain fatty acids were differentially absorbed, Aeshna cyanea larvae received 5 μl oral doses containing combinations of two radiolabeled fatty acids at nearly equal radioactive and nmolar concentrations: (1) 3H‐oleic and 14C‐palmitic acids; (2) 3H‐oleic and 14C‐stearic acids; and (3) 3H‐palmitic and 14C‐stearic acids. After 3 h or 1 day, hemolymph samples, midgut tissue, midgut contents and fat body tissue were collected and assayed for labeled fatty acids. The 3H/14C ratios indicated that there was a preference for absorption of the monounsaturated oleic acid over both saturated palmitic and stearic acids and that the shorter palmitic acid was absorbed at a higher rate than the longer stearic acid. There were also differences in the 3H/14C ratios of the various lipid classes of the midgut wall, hemolymph, and fat body that reflected differential esterifications and transport of these fatty acids. Arch. Insect Biochem. Physiol. 40:183–193, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cisciscis-octadecatrienoic acid, non-conjugated transcis (cistrans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid.  相似文献   

15.
The fatty acid components of awamori during aging were as follows. The total amount of volatile acids calculated as acetic acid ranged from 20 to 140 mg/l, the main acid was acetic acid, and the proportion of acetic acid to total acids ranged from 35 to 80 per cent. The main acids other than acetic acid were propionic acid and i-butyic acid. Differences were observed in fatty acid constituents between awamori and other alcoholic beverages.Certain components tended to increase during maturation in kame (porous earth-enware pots): acetic acid, i-butyric acid, i-valeric acid, valeric acid, capric acid, lauric acid, myristic acid and total fatty acids. Others, however, showed no distinct changes: propionic acid, butyric acid, caproic acid, caprylic acid, palmitic acid, stearic acid, oleic acid and linoleic acid.During maturation in non-porous containers (stainless-steel or glass-linked tanks), on the other hand, caprylic acid, capric acid, lauric acid and myristic acid components tended to increase, while no distinct changes however were shown by acetic acid, propionic acid, i-butyric, butyric acid, i-valeric acid, valeric acid, caproic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and total fatty acids.  相似文献   

16.
Trypanosoma cruzi populations, composed primarily of trypomastigote forms, readily converted palmitic acid, linoleic acid, oleic acid, and stearic acid to CO2. Appreciable amounts of carbon from these four fatty acids were also incorporated into neutral and phospholipid lipids by these parasites. Palmitic acid, a 16 carbon saturated fatty acid, was converted at rates greater than those of the other three fatty acids.  相似文献   

17.
Seed triglycerides of Andropogon gayanus contained 17 fatty acid moieties, principally palmitic, oleic and linoleic acids. These were distributed in an essentially random manner amongst the triglycerides to form the following main types: POL, PLL, OOL, LLO and LLL. Triglycerides decreased during both light and dark germination but there was no evidence for selective hydrolysis. Free fatty acids appear to be derived from triglyceride hydrolysis but the free and triglyceride fatty acid composition differed. Less palmitic, oleic and linoleic acids and more stearic, linolenic and C20-acids were found in the free state than combined in the triglycerides. Free fatty acids did not accumulate during germination.  相似文献   

18.
Maturation of mustard (Sinapis alba) seed proceeds with a sharp decrease in the amounts of palmitic and linoleic acids in the total lipids up to 6 weeks after flowering (WAF). Concomitantly, the concentration of oleic acid increases, reaching a plateau at 4 WAF, which is followed by chain elongation of oleic acid to gadoleic and erucic acids. Compositional changes in constituent fatty acids of individual lipid classes indicate that the very long-chain monounsaturated fatty acids (C20 and C22), as opposed to common long-chain fatty acids (C16 and C18), are metabolized to triacylglycerols mainly by esterification to preformed diacylglycerols and monoacylglycerols, rather than via esterification to glycerol-3-phosphate or lysophosphatidic acids.  相似文献   

19.
Nutritional interdependence among three representatives of rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus, was studied with a basal medium consisting of minerals, vitamins, cysteine hydrochloride, and NH4+. B. amylophilus grew well in the basal medium supplemented with starch and produced branched-chain amino acids after growth ceased. When cocultured with B. amylophilus in the basal medium supplemented with starch and glucose, amino acid-dependent M. elsdenii produced an appreciable amount of branched-chain fatty acids, which are essential growth factors for cellulolytic R. albus. A small addition of starch (0.1 to 0.3%) to the basal medium containing glucose and cellobiose brought about successive growth of the three species in the order of B. amylophilus, M. elsdenii, and R. albus, and successive growth was substantiated by the formation of branched-chain amino acids and fatty acids in the culture. Supplementation with 0.5% starch, however, failed to support the growth of R. albus. On the basis of these results, the effects of supplementary starch or branched-chain fatty acids on cellulose digestion in the rumen was discussed.  相似文献   

20.
Summary Penicillium funiculosum and its mutants namely BU-36 and N-4 responded differently to the addition of fatty acids. Addition of 0.1% oleic, linoleic, and linolenic acids resulted in significant increase in extracellular exo-glucanase and -glucosidase in wild and N-4 strains, whereas no appreciable increase was noticed in BU-36. However, BU-36 showed positive response with 0.1% palmitic and stearic acids. In all the strains, the addition of different fatty acids did not have any effect on endoglucanase activity. Our results indicate that fatty acids do have a role in the release of the cell-bound cellulolytic enzymes.NCL Communication No. : 4113  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号