首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

2.
Liu T  Ye Z 《Journal of virology》2005,79(3):1918-1923
The matrix protein (M1) of influenza virus plays an essential role in viral replication. Our previous studies have shown that basic amino acids 101RKLKR105 of M1 are involved in RNP binding and nuclear localization. For the present work, the functions of 101RKLKR105 were studied by introducing mutations into the M gene of influenza virus A/WSN/33 by reverse genetic methods. Individual substitution, R101S or R105S, had a minimal effect on viral replication. In contrast, the double mutation R101S-R105S was synergistic and resulted in temperature sensitivity reflected by reduced viral replication at a restrictive temperature. To investigate the in vivo effect on infection, BALB/c mice were infected with either A/WSN/33 wild-type (Wt) or mutant viruses and assessed for signs of illness, viral replication in the lungs, and survival rates. The results from mouse studies indicated that the R101S-R105S double mutant virus was strongly attenuated, while single mutant viruses R101S and R105S were minimally attenuated compared to A/WSN33 Wt under the same conditions. In challenge studies, mice immunized by infection with R101S-R105S were fully protected from lethal challenge with A/WSN/33. The replication and attenuating properties of R101S-R105S suggest its potential in development of live influenza virus vaccines.  相似文献   

3.
To understand the role of tissue-specific adaptation and antibody-induced selectional pressures in the evolution of neurovirulent viruses, we analyzed three strains of Sindbis virus isolated from the brains of persistently infected scid mice and four strains of Sindbis virus isolated from the brains of scid mice with viral reactivation following immune serum treatment. For each viral isolate, we tested neurovirulence in weanling BALB/c mice and sequenced regions of the E2 and E1 envelope glycoprotein genes that are known to contain important determinants of Sindbis virus neurovirulence. One strain isolated from a persistently infected scid mouse and two strains isolated from scid mice with viral reactivation were neurovirulent, resulting in mortality in 80 to 100% of weanling BALB/c mice. All three neurovirulent strains contained an A-->U change at nucleotide 8795, which predicts a Gln-->His substitution at E2 amino acid position 55. No nucleotide changes were detected in the other sequenced regions of the E2 and E1 envelope glycoprotein genes or in the avirulent isolates. Our findings indicate that tissue-specific adaptations, rather than antibody-induced selectional pressures, are a critical determinant of the evolution of neurovirulent strains of Sindbis virus and provide evidence that E2 His-55 is an important neuroadaptive mutation that confers neurovirulence properties on Sindbis virus.  相似文献   

4.
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.  相似文献   

5.
Brazilian Vaccinia virus had been isolated from sentinel mice, rodents and recently from humans, cows and calves during outbreaks on dairy farms in several rural areas in Brazil, leading to high economic and social impact. Some phylogenetic studies have demonstrated the existence of two different populations of Brazilian Vaccinia virus strains circulating in nature, but little is known about their biological characteristics. Therefore, our goal was to study the virulence pattern of seven Brazilian Vaccinia virus strains. Infected BALB/c mice were monitored for morbidity, mortality and viral replication in organs as trachea, lungs, heart, kidneys, liver, brain and spleen. Based on the virulence potential, the Brazilian Vaccinia virus strains were grouped into two groups. One group contained GP1V, VBH, SAV and BAV which caused disease and death in infected mice and the second one included ARAV, GP2V and PSTV which did not cause any clinical signals or death in infected BALB/c mice. The subdivision of Brazilian Vaccinia virus strains into two groups is in agreement with previous genetic studies. Those data reinforce the existence of different populations circulating in Brazil regarding the genetic and virulence characteristics.  相似文献   

6.
Defective interfering virus particles modulate virulence.   总被引:4,自引:4,他引:0       下载免费PDF全文
To determine whether defective interfering (DI) particles modulate virulence by initiating a cyclic pattern of virus growth in vivo, adult mice were infected with vesicular stomatitis virus (VSV), both with and without DI particles. A total of 184 mice divided into groups were inoculated intranasally. A majority of mice inoculated only with standard VSV developed paralysis, most of them between days 7 and 9. The addition of DI particles altered the development of paralysis in several ways. When there was significant protection, a few still became paralyzed on days 7 and 9. When overall mortality was unaffected or even slightly increased, the majority of mice became paralyzed between days 7 and 9 as well. Protection could not be predicted based on a single ratio of standard VSV to DI particles or on the absolute amount of DI particles inoculated. Infectious virus recovered from mouse brains at the time of paralysis and incipient death showed considerable variation, although the titer in a majority of the animals was between 10(5) and 10(7) PFU/ml. When the brains of these paralyzed mice were examined for hybridizable VSV RNA, the detection of standard VSV RNA correlated well with infectivity. The amount of DI RNA in the coinfected mice was more variable and independent of the amount of 40S RNA, although DI RNA was usually found when standard RNA was present. Survivors examined between days 14 and 21 did not contain infectious virus or any detectable viral RNA in their brains. Because these results were consistent with the hypothesis of viral cycling in vivo, rather than a gradual accumulation of total infectious virus, mice were coinfected with 10(8) PFU of standard VSV and 10(5) PFU equivalents of DI particles and sacrificed daily thereafter, irrespective of whether they developed paralysis. Infectivity measurements indicated a reproducible cycling pattern of VSV in the mouse brains with a periodicity of about 5 days. This cycling and the detection of DI RNA in brains several days after intranasal inoculation suggest that there is a dynamic continuous interaction between standard VSV and its DI particle beyond the initial site of replication as the virus population spreads into the host animal. Such cycling of virus production before the full development of specific immune responses from the host may have important implications for viral diagnostics and disease transmission.  相似文献   

7.
B S Huneycutt  Z Bi  C J Aoki    C S Reiss 《Journal of virology》1993,67(11):6698-6706
To determine whether central neuropathogenesis associated with vesicular stomatitis virus (VSV) infection is regulated by T cells, we have examined the effects of intranasal infection of mice lacking T cells. The mice examined were of two kinds: (i) thymus-deficient BALB/c nu/nu nice and (ii) BALB/c mice experimentally depleted of T cells by systemic infusions of a monoclonal antibody to the CD4 or CD8 cell surface molecules. These mice were infected intranasally with a single dose of replication-competent VSV. Brain tissue homogenates were analyzed for the presence of infectious virus. For each population of mice, infection-related mortality was assessed. In histological sections of brain, the distribution of viral antigens (Ags) was examined by immunocytochemistry. We found that recovery of infectious virus from homogenates of tissues obtained from athymic nu/nu animals was more than 10 times greater than that from samples from their euthymic littermates. With a single exception in a BALB/c nu/nu mouse, virus was not isolated from the spleen when it was administered intranasally. In these experimental infections, athymic mice succumbed 1 to 2 days before their euthymic littermates. A dose of virus that resulted in half of the nu/+ survival rate was uniformly lethal to nu/nu mice. In experiments with BALB/c mice depleted of either CD4+ or CD8+ T cells by in vivo antibody treatment, histological analysis revealed an increase in viral Ag distribution in comparison with control (medium-infused) infected mice. Necrosis and inflammation paralleled the extent of viral Ag expression. Viral Ags were detected in discrete areas that usually remain uninfected in immunocompetent mice. These areas include the neocortex and caudate putamen nuclei, the piriform cortex, and the lateral olfactory tract. Neuronal loss and necrosis were consistently found in the olfactory bulb and the horizontal/vertical band of Broca. In some of the T-cell depleted mice, necrosis was also evident in the hippocampus, fimbria, mammillary bodies, and hypothalamic nuclei. In the brain stem, perivascular cuffing was evident, but with little necrosis. Collectively, these data suggest that CD4+ and CD8+ T cells make only a minor contribution to the development of histopathology but rather function together to limit viral replication and transsynaptic or ventricular spread of virus, thus promoting recovery. The primary effectors of histopathology appear to be related more to the cytopathologic nature of the virus infection and non-T-cell-mediated mechanisms.  相似文献   

8.
Some of mouse hepatitis virus strains contain an optional envelope glycoprotein, hemagglutinin-esterase (HE) protein. To understand the functional significance of this protein, monoclonal antibodies (MAbs) specific for this protein were generated and used for passive immunization of mice. None of these MAbs showed any virus-neutralizing activity in vitro; however, mice passively immunized with the purified MAbs were protected from lethal infection by the JHM strain of mouse hepatitis virus. Passive immunization altered the pathogenicity such that the virus caused subacute and chronic demyelination instead of acute lethal encephalitis. Virus titers in the brains of the immunized mice were significantly lower than those for the nonimmunized control mice, suggesting that the virus replication or spread was inhibited. In addition, histopathological analysis indicated that the spread of virus in the brain and spinal cord was significantly inhibited in the immunized mice. Furthermore, the mononuclear cell infiltration in the immunized mice appeared earlier than in the nonimmunized mice, suggesting that the exogenous antibody might have activated host immune responses, and thus facilitated clearance of the virus or virus-infected cells. The same protective effects were observed for both JHM(2) and JHM(3) viruses, which expressed different amounts of the HE protein. In contrast, mice infected with At11f, a variant of JHM which does not express the HE protein, were not protected by these MAbs, suggesting that protection was mediated by the specific interaction between the MAb and the HE protein. Thus, the mechanism of protection by the exogenous HE-specific MAbs may represent the early activation of innate immune mechanisms in response to the interaction between the MAbs and the HE protein.  相似文献   

9.
Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49. Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed that in Ifit2 knockout (Ifit2 −/−) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit1 −/− mice were highly protected and survived without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not significantly different between wild-type and Ifit2−/− mice. When administered intranasally, VSV entered the central nervous system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit2 −/− mice and induced interferon-β. However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit2 −/− mice as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit2 −/− mice, where VSV still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit2−/− mice was not observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis virus, was not enhanced in the brains of Ifit2 −/− mice. Our study provides a clear demonstration of tissue-, virus- and ISG-specific antiviral action of interferon.  相似文献   

10.
11.
Viral pathogenicity may be regulated by host defense mechanisms at the virus-immune cell interaction level. The immune system plays an important role in the outcome of acute disease induced by the mouse hepatitis virus type 3 (MHV3) virus. The lymphoid cells act as effectors in the virus elimination as well as targets for viral replication. In order to demonstrate a correlation between MHV3 pathogenicity and viral replication in lymphocytes, genetically-determined resistant A/J and susceptible C57BL/6 mice were infected with pathogenic (L2-MHV3) or nonpathogenic (YAC-MHV3) viral strains. Pathogenicity and histopathologic studies have revealed that lymphoid organs such as thymus and spleen, showed injuries or atrophy in susceptible mice infected with L2-MHV3. No histopathologic lesions in the lymphoid organs occurred in C57BL/6 mice infected with YAC-MHV3 or A/J mice infected with both viruses. The mechanisms involved in the lymphoid injuries were studied regarding viral replication in the lymphoid organs and cells in infected mice. Results indicate that cell depletion in lymphoid organs is caused by a complete viral replication in lymphoid cells. Thy1.2+ and surface IgM+ lymphoid cells from susceptible C57BL/6 mice infected with L2-MHV3 were permissive to viral replication and to subsequent cell lysis. No cell lysis, however, occurred in lymphoid cells from C57BL/6 mice infected with YAC-MHV3 and A/J mice infected with both virus strains. In vitro studies, with purified T and B cell populations were performed to determine the mechanism effecting susceptibility or resistance to viral-induced cell lysis occurring in such cells. A blockade, probably occurring at the viral RNA polymerase activity level, prevents viral replication in resistant cells between the stages of fixation of the virus at the cell-surface receptor and the viral protein translation. These experiments indicate that an intrinsic virus-specific resistant mechanism occurs in lymphoid cells that plays a major role in the viral pathogenicity.  相似文献   

12.
We previously demonstrated that vaccination of BALB/c mice with a pool of 13 plasmid DNAs (pDNAs) expressing murine cytomegalovirus (MCMV) genes followed by formalin-inactivated MCMV (FI-MCMV) resulted in complete protection against viral replication in the spleen and salivary glands following sublethal intraperitoneal (i.p.) challenge. Here, we found that following intranasal (i.n.) challenge, titers of virus in the lungs of the immunized mice were reduced approximately 1,000-fold relative to those for mock-immunized controls. We next sought to extend these results and to determine whether similar protection levels could be achieved by priming with a pool of three pDNAs containing three key plasmids (IE1, M84, and gB). We found that the three-pDNA priming elicited IE1- and M84-p65-specific CD8+ T lymphocytes and, following FI-MCMV boost, high levels of virion-specific immunoglobulin G (IgG) and virus-neutralizing antibodies. When mice were i.n. challenged 4 months after the last boost, titers of virus in the lungs of immunized mice were reduced 1,000- to 2,000-fold from those for controls during the peak of viral replication. Additionally, titers of virus were either at or below the detection limits for the salivary glands, liver, and spleen of the majority of the immunized mice. Following sublethal i.p. challenge, virus was undetectable in all of the above target organs of the immunized mice. Virion-specific IgA in the lungs was consistently detected by day 6 post-i.n. challenge for the immunized mice and by day 14 for controls. These results demonstrate the immunity and high levels of protection of the priming-boosting vaccination against both systemic and mucosal challenge.  相似文献   

13.
These studies demonstrated that the inbred BALB/c mouse strain can be optimized for the assessment of vaccinia virus virulence, growth, and spread from the site of inoculation and immune protection from a lethal vaccinia virus challenge. The studies established that manipulation of the vaccinia virus genome generated mutants exhibiting a wide range of attenuated phenotypes. The nine NYCBH vaccinia virus mutants had intracranial 50% lethal doses that ranged from 2 to greater than 7 log10 units. The decreased neurovirulence was due to decreased replication in brain tissue. Three mutants had a decreased ability to disseminate to the lungs, brains, livers, and spleens of mice after intranasal infection. One mutant had a decreased transmission from mice infected by tail scarification to naive cage mates. Although the mutants, with one exception, grew to wild-type titers in cell culture, they showed a growth potential on the scarified skin of mice that was dramatically different from that of the wild-type virus. Consequently, all of the mutants had significantly compromised immunogenicities at low virus immunization doses compared with that of the wild-type virus. Conversely, at high immunization doses most mutants could induce an immune response similar to that of the wild-type virus. Three Wyeth vaccine strain mutants were also studied. Whereas the thymidine kinase, ribonucleotide reductase, and hemagglutinin mutants had a reduced virulence (50% lethal dose), only the thymidine kinase mutant retained its immunogenicity.  相似文献   

14.
To investigate the efficacy of intracerebral (IC) immunization in preventing viral spread in the brain, we immunized mice with inactivated rabies virus via the subcutaneous (SC) or IC route, followed by administration of a lethal dose of rabies virus (challenge virus standard strain), directly into the brains of immunized mice. Progressive paralytic neurological signs were observed in control and 75% of SC immunized mice, whereas only 20% of IC immunized mice exhibited symptoms. Neutralizing antibody titers in blood plasma were significantly elevated in SC and IC immunized mice, with the highest levels seen in IC immunized mice. Analysis of whole brain lysates revealed a strong induction of immunoglobulin in the brains of IC immunized mice that had virus neutralizing activity. Histopathological examination of brain tissue revealed mild encephalitis and disseminated viral antigen in control and SC immunized mice, but rare in IC immunized mice. These results suggest that IC immunization induces a preventive humoral immune response against intracerebrally inoculated rabies virus. Induction of neutralizing antibody in cerebrospinal fluid represents a putative therapeutic measure for the treatment of rabid animals and humans.  相似文献   

15.
This study aimed to characterize the replication and pathogenic properties of a Korean pandemic (H1N1) 2009 influenza virus isolate in ferrets and mice. Ferrets infected with A/Korea/01/2009 (H1N1) virus showed mild clinical signs. The virus replicated well in lungs and slightly in brains with no replication in any other organs. Severe bronchopneumonia and thickening of alveolar walls were detected in the lungs. Viral antigens were detected in the bronchiolar epithelial cells, in peribronchial glands with severe peribronchitis and in cells present in the alveoli. A/Korea/01/2009 (H1N1) virus-infected mice showed weight loss and pathological lung lesions including perivascular cuffing, interstitial pneumonia and alveolitis. The virus replicated highly in the lungs and slightly in the nasal tissues. Viral antigens were detected in bronchiolar epithelial cells, pneumocytes and interstitial macrophages. However, seasonal H1N1 influenza virus did not replicate in the lungs of ferrets, and viral antigens were not detected. Thus, this Korean pandemic (H1N1) 2009 isolate infected the lungs of ferrets and mice successfully and caused more pathological lesions than did the seasonal influenza virus.  相似文献   

16.
The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection.  相似文献   

17.
18.
We investigated the role of different lymphocyte subpopulations in the host defense reaction against influenza virus infection, taking advantage of various immunodeficient mouse strains. Whereas, following immunization, wild-type animals showed complete protection against challenge with a lethal dose of A/PR8/34 (PR8) virus, mice that lack both B and T cells but not NK cells (namely, scid and RAG2(-/-) mice) did not display any protective effect in similar conditions. By contrast, J(H)D(-/-) mice devoid of B cells and immunized with virus showed a protective response after challenge with a lethal dose. The immunized J(H)D(-/-) mice that survived completely recovered from the influenza virus infection. Immunized J(H)D(-/+) mice exhibited a more complete protection, suggesting the role of specific antibodies in resistance to infection. To assess the role of natural immunity in the host defense against influenza virus, we carried out experiments with scid mice challenged with lower but still lethal doses of PR8 virus. While an increased NK activity and an increased number of NK1.1+ cells in lungs of scid mice infected with PR8 virus were noted, in vivo depletion of the NK1.1+ cells did not affect the overall survival of the mice. Our results show that specific T cells mediate protection and recovery of J(H)D(-/-) mice immunized with live virus and challenged with lethal doses of influenza virus.  相似文献   

19.
Vesicular stomatitis virus (VSV) matrix (M) protein blocks host mRNA export from the nucleus and thereby inhibits interferon induction in infected cells. M mutants with mutations of methionine 51 (M51) lack this shutoff function. We examined pathogenesis of a VSV M mutant with a deletion of M51 (VSVDeltaM51) after intranasal infection of BALB/c mice and found an unexpected phenotype. Mice that received VSVDeltaM51 experienced a more rapid but overall less severe weight loss than mice that received the recombinant wild-type VSV (rwtVSV). Rapid weight loss was not explained by faster initial replication because VSVDeltaM51 replication was controlled faster than rwtVSV replication in the lungs and did not spread systemically like rwtVSV. This faster control of VSVDeltaM51 correlated with a more rapid induction of interferon in the lung. Because tumor necrosis factor alpha (TNF-alpha) is associated with weight loss, we examined TNF-alpha induction in mice infected with rwtVSV or VSVDeltaM51. We found more-rapid induction of TNF-alpha by the mutant at early times after infection, while rwtVSV induced more TNF-alpha later in infection. This result suggested that TNF-alpha induction might explain both the rapid weight loss caused by the mutant and the overall greater weight loss caused by the rwtVSV. Using TNF-alpha knockout mice (C57BL/6 background), we showed that weight loss following rwtVSV infection was greatly reduced in the absence of TNF-alpha. Although the rapid weight loss caused by VSVDeltaM51 was less pronounced in C57BL/6 mice, it was eliminated in the absence of TNF-alpha. These results indicate a role for TNF-alpha in the pathogenesis of VSV.  相似文献   

20.
The influenza A virus (IAV) has eight segmented single-stranded RNA genome containing a common and evolutionarily conserved non-coding region (NCRs) at 5′ and 3′ ends that are important for the virus replication. In this study, we designed an antisense oligonucleotide against the 3′ NCR of vital segments of the IAV genome to inhibit its replication. The results demonstrated that the co-transfection of Madine Darby Canine Kidney (MDCK) cells with the antisense oligonucleotide and the plasmids encoding the viral genes led to the down-regulation of the viral gene expression. The designed antisense molecules reduced the cytopathic effect caused by A/PR/8/34 (H1N1), A/Udorn/307/72 (H3N2), and A/New Caledonia/20/99 (H1N1) strains of IAV for almost 48 h. Furthermore, the intra-venous delivery of this oligonucleotide significantly reduced the viral titers in the lungs of infected mice and protected the mice from lethal effects of all the strains of influenza virus. The study demonstrated that the antisense oligonucleotide designed against the NCR region inhibits the expression of the viral genome. The decrease of the cytopathic effect in the MDCK cells and increase in survival of mice confirmed the reduction of virus multiplication and pathogenesis in the presence of antisense oligonucleotide. Thus, we demonstrate that a single antisense oligonucleotide is capable of providing protection against more than one strains of the IAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号