首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Although experimental methods for determining protein structure are providing high resolution structures, they cannot keep the pace at which amino acid sequences are resolved on the scale of entire genomes. For a considerable fraction of proteins whose structures will not be determined experimentally, computational methods can provide valuable information. The value of structural models in biological research depends critically on their quality. Development of high-accuracy computational methods that reliably generate near-experimental quality structural models is an important, unsolved problem in the protein structure modeling.  相似文献   

2.
3.

Background  

The reliable prediction of protein tertiary structure from the amino acid sequence remains challenging even for small proteins. We have developed an all-atom free-energy protein forcefield (PFF01) that we could use to fold several small proteins from completely extended conformations. Because the computational cost of de-novo folding studies rises steeply with system size, this approach is unsuitable for structure prediction purposes. We therefore investigate here a low-cost free-energy relaxation protocol for protein structure prediction that combines heuristic methods for model generation with all-atom free-energy relaxation in PFF01.  相似文献   

4.
5.
Secondary structure prediction parameters and optimised decision constants for use with the method of Garnier et al. [(1978) J. Mol. Biol. 120, 97-120] have been derived for two new and distinct substates of beta-structure. These we term internal and external on the basis of their hydrogen bonding patterns. The profiles of the amino acids for several of the parameters are considerably different in the two substates. Predictions using the new parameters attempt to distinguish the strands at the core of the beta-sheet from those at its edges and so restrict the possible topologies in tertiary structure prediction. The potential application of these parameters is illustrated for the class of beta/alpha proteins.  相似文献   

6.
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular dynamics, threading, greedy, and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like states for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.  相似文献   

7.
Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.  相似文献   

8.
A novel method of parameter optimization is proposed. It makes use of large sets of decoys generated for six nonhomologous proteins with different architecture. Parameter optimization is achieved by creating a free energy gap between sets of nativelike and nonnative conformations. The method is applied to optimize the parameters of a physics-based scoring function consisting of the all-atom ECEPP05 force field coupled with an implicit solvent model (a solvent-accessible surface area model). The optimized force field is able to discriminate near-native from nonnative conformations of the six training proteins when used either for local energy minimization or for short Monte Carlo simulated annealing runs after local energy minimization. The resulting force field is validated with an independent set of six nonhomologous proteins, and appears to be transferable to proteins not included in the optimization; i.e., for five out of the six test proteins, decoys with 1.7- to 4.0-Å all-heavy-atom root mean-square deviations emerge as those with the lowest energy. In addition, we examined the set of misfolded structures created by Park and Levitt using a four-state reduced model. The results from these additional calculations confirm the good discriminative ability of the optimized force field obtained with our decoy sets.  相似文献   

9.
We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.  相似文献   

10.
MOTIVATION: Transmembrane beta-barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore, there is a need for accurate prediction of secondary and tertiary structure of TMB proteins. Traditional homology modeling methods, however, fail on most TMB proteins since very few non-homologous TMB structures have been determined. Yet, because TMB structures conform to specific construction rules that restrict the conformational space drastically, it should be possible for methods that do not depend on target-template homology to be applied successfully. RESULTS: We develop a suite (TMBpro) of specialized predictors for predicting secondary structure (TMBpro-SS), beta-contacts (TMBpro-CON) and tertiary structure (TMBpro-3D) of transmembrane beta-barrel proteins. We compare our results to the recent state-of-the-art predictors transFold and PRED-TMBB using their respective benchmark datasets, and leave-one-out cross-validation. Using the transFold dataset TMBpro predicts secondary structure with per-residue accuracy (Q(2)) of 77.8%, a correlation coefficient of 0.54, and TMBpro predicts beta-contacts with precision of 0.65 and recall of 0.67. Using the PRED-TMBB dataset, TMBpro predicts secondary structure with Q(2) of 88.3% and a correlation coefficient of 0.75. All of these performance results exceed previously published results by 4% or more. Working with the PRED-TMBB dataset, TMBpro predicts the tertiary structure of transmembrane segments with RMSD <6.0 A for 9 of 14 proteins. For 6 of 14 predictions, the RMSD is <5.0 A, with a GDT_TS score greater than 60.0. AVAILABILITY: http://www.igb.uci.edu/servers/psss.html.  相似文献   

11.
An approach is described to the problem of predicting α-helical regions in proteins, based on some concepts of pattern recognition theory. It is shown that for each protein there are functions (signs) of the amino acid sequences of protein segments which permit the identification of α-helical or non-α-helical segments. Rules to recognize useful signs have been formulated.  相似文献   

12.
The molecular structures and barriers for the internal rotation around the OC-CO single bond in four alpha-ketoamides and eight alpha-ketocarbonyls have been determined from the MP3/aug-cc-pVDZ and MP2/aug-cc-pVDZ calculations. Alpha-ketocarbonyls with non-bulky substituents adopt planar conformations with two carbonyl oxygens in s-trans arrangement. The s-cis conformation is significantly less stable due to the electrostatic repulsion between the two carbonyl groups. Primary and secondary alpha-ketoamides are planar when the substituent at the carbonyl carbon is hydrogen or methyl group but tertiary alpha-ketoamides adopt a conformation where the OC-CO unit is significantly bent. Based on current ab initio structural data, a set of OPLS-AA force field parameters has been derived. These parameters can be used for the modeling of a variety of alpha-ketoamide or alpha-ketocarbonyl containing drugs such as novel protease inhibitors or neuroregenerative polyketides.  相似文献   

13.
14.
Previously, we introduced a neural network system predicting locations of transmembrane helices (HTMs) based on evolutionary profiles (PHDhtm, Rost B, Casadio R, Fariselli P, Sander C, 1995, Protein Sci 4:521-533). Here, we describe an improvement and an extension of that system. The improvement is achieved by a dynamic programming-like algorithm that optimizes helices compatible with the neural network output. The extension is the prediction of topology (orientation of first loop region with respect to membrane) by applying to the refined prediction the observation that positively charged residues are more abundant in extra-cytoplasmic regions. Furthermore, we introduce a method to reduce the number of false positives, i.e., proteins falsely predicted with membrane helices. The evaluation of prediction accuracy is based on a cross-validation and a double-blind test set (in total 131 proteins). The final method appears to be more accurate than other methods published: (1) For almost 89% (+/-3%) of the test proteins, all HTMs are predicted correctly. (2) For more than 86% (+/-3%) of the proteins, topology is predicted correctly. (3) We define reliability indices that correlate with prediction accuracy: for one half of the proteins, segment accuracy raises to 98%; and for two-thirds, accuracy of topology prediction is 95%. (4) The rate of proteins for which HTMs are predicted falsely is below 2% (+/-1%). Finally, the method is applied to 1,616 sequences of Haemophilus influenzae. We predict 19% of the genome sequences to contain one or more HTMs. This appears to be lower than what we predicted previously for the yeast VIII chromosome (about 25%).  相似文献   

15.
Based on homology of partial sequences, on physico-chemical evidence and on studies using chemical modification, we came to the tentative conclusion that tetrameric glucose dehydrogenases from Bacillus megaterium and B. subtilis should have a structure closely related to that of lactate dehydrogenase. The overall homology of primary structures was found to be very low, however, and independent predictions of secondary structure produced a clearly different pattern of beta-strands and alpha-helices. We nevertheless tried a manual prediction based on the hydrophobic nature of internal beta-sheet and on the amphiphilic character of external helices. This treatment led to the identification of analogues of all the beta-strands present in lactate dehydrogenase with the exception of beta C. Six amphiphilic helices were identified corresponding to alpha B, alpha C, alpha D, alpha 1F, alpha 2F and alpha 3G in lactate dehydrogenase. Conserved functional residues were found at analogous positions. The Q and R intersubunit contacts could be identified and partial proteolysis was found to occur on the outer surface of the tetramer. The structure was found to explain the better binding of NADP as compared to NAD+ and offered a rationalization of the role of the essential lysine at position 201.  相似文献   

16.
We present heuristic-based predictions of the secondary and tertiary structures of the cyclins A, B, and D, representatives of the cyclin superfamily. The list of suggested constraints for tertiary structure assembly was left unrefined in order to submit this report before an announced crystal structure for cyclin A becomes available. To predict these constraints, a master sequence alignment over 270 positions of cyclin types A, B, and D was adjusted based on individual secondary structure predictions for each type. We used new heuristics for predicting aromatic residues at protein-protein interfaces and to identify sequentially distinct regions in the protein chain that cluster in the folded structure. The boundaries of two conjectured domains in the cyclin fold were predicted based on experimental data in the literature. The domain that is important for interaction of the cyclins with cyclin-dependent kinases (CDKs) is predicted to contain six helices; the second domain in the consensus model contains both helices and a β-sheet that is formed by sequentially distant regions in the protein chain. A plausible phosphorylation site is identified. This work represents a blinded test of the method for prediction of secondary and, to a lesser extent, tertiary structure from a set of homologous protein sequences. Evaluation of our predictions will become possible with the publication of the announced crystal structure.  相似文献   

17.
In this paper we briefly review some of the recent progress made by ourselves and others in developing methods for predicting the structures of transmembrane proteins from amino acid sequence. Transmembrane proteins are an important class of proteins involved in many diverse biological functions, many of which have great impact in terms of disease mechanism and drug discovery. Despite their biological importance, it has proven very difficult to solve the structures of these proteins by experimental techniques, and so there is a great deal of pressure to develop effective methods for predicting their structure. The methods we discuss range from methods for transmembrane topology prediction to new methods for low resolution folding simulations in a knowledge-based force field. This potential is designed to reproduce the properties of the lipid bilayer. Our eventual aim is to apply these methods in tandem so that useful three-dimensional models can be built for a large fraction of the transmembrane protein domains in whole proteomes.  相似文献   

18.
19.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

20.
Renthal R 《Biochemistry》2006,45(49):14559-14566
Reversible unfolding of helical transmembrane proteins could provide valuable information about the free energy of interaction between transmembrane helices. Thermal unfolding experiments suggest that this process for integral membrane proteins is irreversible. Chemical unfolding has been accomplished with organic acids, but the unfolding or refolding pathways involve irreversible steps. Sodium dodecyl sulfate (SDS) has been used as a perturbant to study reversible unfolding and refolding kinetics. However, the interpretation of these experiments is not straightforward. It is shown that the results could be explained by SDS binding without substantial unfolding. Furthermore, the SDS-perturbed state is unlikely to include all of the entropy terms involved in an unfolding process. Alternative directions for future research are suggested: fluorinated alcohols in homogeneous solvent systems, inverse micelles, and fragment association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号