首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FLC or not FLC: the other side of vernalization   总被引:4,自引:0,他引:4  
Vernalization is the promotion of the competence for floweringby long periods of low temperatures such as those typicallyexperienced during winters. In Arabidopsis, the vernalizationresponse is, to a large extent, mediated by the repression ofthe floral repressor FLC, and the stable epigenetic silencingof FLC after cold treatments is essential for vernalization.In addition to FLC, other vernalization targets exist in Arabidopsis.In grasses, vernalization seems to be entirely independent ofFLC. Here, the current understanding of FLC-independent branchesof the vernalization pathway in Arabidopsis and vernalizationwithout FLC in grasses is discussed. This review focuses onthe role of AGL19, AGL24, and the MAF genes in Arabidopsis.Interestingly, vernalization acts through related molecularmachineries on distinct targets. In particular, protein complexessimilar to Drosophila Polycomb Repressive Complex 2 play a prominentrole in establishing an epigenetic cellular memory for cold-regulatedexpression states of AGL19 and FLC. Finally, the similar networktopology of the apparently independently evolved vernalizationpathways of grasses and Arabidopsis is discussed. Key words: AGL19, Arabidopsis, chromatin, epigenetics, FLC, flowering time, polycomb, PRC2, vernalization Received 19 December 2007; Revised 11 February 2008 Accepted 15 February 2008  相似文献   

2.
Transport of polypeptides across membranes is a general and essential cellular process utilised by molecular machines. At least one component of these complexes contains a domain composed of three tetratricopeptide repeat (3-TPR) motifs. We have focussed on the receptor Toc64 to elucidate the evolved functional specifications of its 3-TPR domain. Toc64 is a component of the Toc core complex and functionally replaces Tom70 at the outer membrane of mitochondria in plants. Its 3-TPR domain recognises the conserved C-terminus of precursor-bound chaperones. We built homology models of the 3-TPR domain of chloroplastic Toc64 from different species and of the mitochondrial isoform from Arabidopsis. Guided by modelling, we identified residues essential for functional discrimination of the differently located isoforms to be located almost exclusively on the convex surface of the 3-TPR domain. The only exception is at568Ser/ps557Met, which is positioned in the ligand-binding groove. The functional implications of the homology models are discussed. Figure Motion contained within the 2nd eigenvector of the Calpha covariance matrix of the 3-TPR domain of atToc64-V indicated by a porcupine plot Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
To study the role of metallothioneins (MTs) in Zn accumulation,the expression of TcMT2a, TcMT2b, and TcMT3 was analysed inthree accessions and 15 F3 families of two inter-accession crossesof the Cd/Zn hyperaccumulator Thlaspi caerulescens, with differentdegrees of Zn accumulation. The highest expression levels werefound in the shoots of a superior metal-accumulating calamineaccession from St Laurent le Minier, with >10-fold TcMT3expression compared with another calamine accession and a non-metallicolousaccession. Moreover, F3 sibling lines from the inter-accessioncrosses that harboured the MT2a or MT3 allele from St Laurentle Minier had higher expression levels. However, there was noco-segregation of TcMT2a or TcMT3 expression and Zn accumulation.To examine the functions of TcMTs in plants, TcMT2a and TcMT3were ectopically expressed in Arabidopsis. The transformantlines had reduced root length in control medium but not at highmetal concentrations, suggesting that the ectopically expressedproteins interfered with the physiological availability of essentialmetals under limited supply. The Arabidopsis transformant linesdid not show increased tolerance to Cd, Cu, or Zn, nor increasedCd or Zn accumulation. Immunohistochemical analysis indicatedthat in roots, MT2 protein is localized in the epidermis androot hairs of both T. caerulescens and Arabidopsis thaliana.The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarilyinvolved in Zn accumulation as such. However, the elevated expressionlevels in the metallicolous accessions suggests that they docontribute to the metal-adapted phenotype, possibly throughimproving Cu homeostasis at high Zn and Cd body burdens. Alternatively,they might function as hypostatic enhancers of Zn or Cd tolerance. Key words: Cd, crosses, metallothionein, protein, quantitative real-time PCR, Thlaspi caerulescens, Zn Received 14 August 2008; Revised 14 October 2008 Accepted 15 October 2008  相似文献   

4.
The translocon at the outer membrane of the chloroplast assists the import of a large class of preproteins with amino-terminal transit sequences. The preprotein receptors Toc159 and Toc33 in Arabidopsis (Arabidopsis thaliana) are specific for the accumulation of abundant photosynthetic proteins. The receptors are homologous GTPases known to be regulated by phosphorylation within their GTP-binding domains. In addition to the central GTP-binding domain, Toc159 has an acidic N-terminal domain (A-domain) and a C-terminal membrane-anchoring domain (M-domain). The A-domain of Toc159 is dispensable for its in vivo activity in Arabidopsis and prone to degradation in pea (Pisum sativum). Therefore, it has been suggested to have a regulatory function. Here, we show that in Arabidopsis, the A-domain is not simply degraded but that it accumulates as a soluble, phosphorylated protein separated from Toc159. However, the physiological relevance of this process is unclear. The data show that the A-domain of Toc159 as well as those of its homologs Toc132 and Toc120 are targets of a casein kinase 2-like activity.The Toc and Tic complexes cooperate to import nuclear-encoded chloroplast preproteins from the cytosol (Jarvis, 2008; Kessler and Schnell, 2009). Initially, incoming preproteins encounter the receptors Toc159 and Toc34 at the chloroplast surface. Both are GTP-binding proteins and share sequence homology in their G-domains. While Toc34 is anchored in the outer membrane by a short hydrophobic C-terminal tail, the triple-domain Toc159 is inserted via a largely hydrophilic 52-kD M-domain. In addition to the G- and M-domains, Toc159 has a large acidic A-domain covering the N-terminal half of the protein. Arabidopsis (Arabidopsis thaliana) encodes two isoforms of Toc34 (Toc33 and Toc34) and four of Toc159 (Toc159, Toc132, Toc120, and Toc90; Jackson-Constan and Keegstra, 2001). The Toc159 isoforms have a similar domain structure, but they differ from each other in length and sequence of their A-domain (Hiltbrunner et al., 2001a). However, Toc90 does not have an acidic domain at all and only consists of the G- and M-domains (Hiltbrunner et al., 2004). It has been demonstrated that the A-domain of AtToc159 and AtToc132 have properties of intrinsically disordered proteins (Hernández Torres et al., 2007; Richardson et al., 2009), suggesting an involvement of the A-domain in transient and multiple protein-protein interactions possibly with the transit peptides of preproteins. Toc34 and Toc159 together with the Toc75 channel constitute the Toc-core complex (Schleiff et al., 2003) and are required for the accumulation of highly abundant photosynthesis-associated proteins in the chloroplast. The Arabidopsis deletion mutants of Toc33 (ppi1; Jarvis et al., 1998) and Toc159 (ppi2; Bauer et al., 2000) have indicative phenotypes of their role in chloroplast biogenesis, respectively pale green and albino. Complementation experiments of the ppi2 mutant have established that the G- and M-domains have essential functions whereas the A-domain is dispensable (Lee et al., 2003; Agne et al., 2009). In preceding studies, possibly influenced by the model organism and experimental tools, Toc159 occurred in different forms. Initially, Toc159 was identified in pea (Pisum sativum) as an 86-kD protein lacking the entire A-domain (Hirsch et al., 1994; Bolter et al., 1998). In addition to its membrane-associated form, Arabidopsis Toc159 has been found as a soluble protein (Hiltbrunner et al., 2001b). However, the function and the fate of the A-domain as well as that of soluble Toc159 remain unknown and a matter of debate.Not only GTP binding and hydrolysis by the Toc GTPases but also phosphorylation is known as a regulatory mechanism of chloroplast protein import at the Toc complex level (Oreb et al., 2008b). First, some precursor proteins, such as the small subunit of Rubisco, may be phosphorylated in their transit sequence by a cytosolic kinase (Martin et al., 2006). Phosphorylation promotes binding to a 14-3-3 protein and cytosolic Hsp70 in the guidance complex that delivers the phosphorylated preprotein to the Toc complex (May and Soll, 2000). Second, both Toc159 and Toc34 are known to be phosphorylated and independently so by distinct kinases, OEK70 and OEK98, respectively (Fulgosi and Soll, 2002). These two kinase activities have been located to the outer envelope membrane, but their molecular identification is still pending. Phosphorylation of the Toc GTPases may occur in the GTP-binding domains (Oreb et al., 2008a). For Toc34, data on the site (Ser-113 in pea and Ser-181 in Arabidopsis) and effects of phosphorylation are available (Jelic et al., 2002, 2003). It imposes a negative regulation on the Toc complex by inhibiting GTP and preprotein binding to Toc34, reducing its ability to bind Toc159 and to assemble into the Toc complex (Oreb et al., 2008a). The in vivo mutational analysis in Arabidopsis indicated that phosphorylation at Toc34 represents a nonessential mechanism (Aronsson et al., 2006; Oreb et al., 2007). Despite the 86-kD proteolytic fragment of Toc159 being a major phosphoprotein in the pea outer chloroplast membrane (Fulgosi and Soll, 2002), little is known of the molecular and regulatory mechanisms of Toc159 phosphorylation. In this study, we report that the A-domain of Toc159 can be purified as a stable fragment. Moreover, it is hyperphosphorylated, hinting at an important and highly regulated functional role. Our data suggest that Toc159 is the target of casein kinase 2 (CK2)-like and membrane-associated kinase activities.  相似文献   

5.
6.

Background

Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope.

Methodology/Principal Findings

Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein.

Conclusions/Significance

Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general.  相似文献   

7.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

8.
The atToc33 protein is one of several pre‐protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis‐related pre‐proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild‐type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159‐deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.  相似文献   

9.
A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.  相似文献   

10.
The members of the Toc159 family of GTPases act as the primary receptors for the import of nucleus-encoded preproteins into plastids. Toc159, the most abundant member of this family in chloroplasts, is required for chloroplast biogenesis (Bauer, J., K. Chen, A. Hiltbunner, E. Wehrli, M. Eugster, D. Schnell, and F. Kessler. 2000. Nature. 403:203-207) and has been shown to covalently cross-link to bound preproteins at the chloroplast surface (Ma, Y., A. Kouranov, S. LaSala, and D.J. Schnell. 1996. J. Cell Biol. 134:1-13; Perry, S.E., and K. Keegstra. 1994. Plant Cell. 6:93-105). These reports led to the hypothesis that Toc159 functions as a selective import receptor for preproteins that are required for chloroplast development. In this report, we provide evidence that Toc159 is required for the import of several highly expressed photosynthetic preproteins in vivo. Furthermore, we demonstrate that the cytoplasmic and recombinant forms of soluble Toc159 bind directly and selectively to the transit peptides of these representative photosynthetic preproteins, but not representative constitutively expressed plastid preproteins. These data support the function of Toc159 as a selective import receptor for the targeting of a set of preproteins required for chloroplast biogenesis.  相似文献   

11.
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.  相似文献   

12.
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.  相似文献   

13.
14.
15.
Five Arabidopsis EST cDNA clones of hydroxypyruvate reductase(HPR), a photorespiratory enzyme in leaf peroxisomes, were sequenced.Deduced amino acid sequences revealed that HPR in Arabidopsiscontained the carboxy-terminal targeting signal to microbodies.Nucle-otide sequence analysis showed that the cDNA with thelongest insert contained an open reading frame of 1,158 bp whichencoded a polypeptide with 386 amino acids with a calculatedmolecular mass of 42,251 Da. A Southern blot analysis suggestedthat the Arabidopsis HPR gene, like that of the pumpkin HPRgene, exists as a single copy. Two kinds of pumpkin HPR mRNAmight be produced from a single gene by alternative splicing,but the structure of the genomic DNA indicated that the ArabidopsisHPR gene did not undergo alternative splicing. We detected apolypeptide with a molecular mass of 42 kDa in green leavesof Arabidopsis using an HPR-specific antibody. Immunoelectronmicroscopy revealed that Arabidopsis HPR protein was exclusivelylocalized in leaf peroxisomes in green leaves. These resultsindicate that HPR is expressed in a form with a carboxy-terminaltargeting signal to microbodies and is localized in microbodiesin Arabidopsis, suggesting that the differences in the genestructure and the regulation of gene expression of HPR are probablydue to species-specific differences in plants. (Received November 11, 1996; Accepted February 1, 1997)  相似文献   

16.
17.
Aronsson H  Combe J  Jarvis P 《FEBS letters》2003,544(1-3):79-85
Arabidopsis Toc33 (atToc33) is a GTP-binding protein of the chloroplast outer envelope membrane. We studied its nucleotide-binding properties in vitro, and found that it binds GTP, GDP and XTP, with similar efficiencies, but not ATP. We further demonstrated that atToc33 has intrinsic GTPase activity. Mutations within the putative G4 motif of the atToc33 nucleotide-binding domain (D217N, D219N and E220Q) had no effect on nucleotide specificity or GTPase activity. Similarly, a mutation in the newly assigned G5 motif (E208Q) did not affect nucleotide specificity or GTPase activity. Furthermore, the D217N and D219N mutations did not affect atToc33 functionality in vivo. The data demonstrate that atToc33 belongs to a novel class of GTPases with unusual nucleotide-binding properties.  相似文献   

18.
19.
This study investigated the interaction of NaCl-salinity andelevated atmospheric CO2 concentration on gas exchange, leafpigment composition, and leaf ultrastructure of the potentialcash crop halophyte Aster tripolium. The plants were irrigatedwith five different salinity levels (0, 25, 50, 75, 100% seawatersalinity) under ambient and elevated (520 ppm) CO2. Under salineconditions (ambient CO2) stomatal and mesophyll resistance increased,leading to a significant decrease in photosynthesis and wateruse efficiency (WUE) and to an increase in oxidative stress.The latter was indicated by dilations of the thylakoid membranesand an increase in superoxide dismutase (SOD) activity. Oxidativestress could be counteracted by thicker epidermal cell wallsof the leaves, a thicker cuticle, a reduced chlorophyll content,an increase in the chlorophyll a/b ratio and a transient declineof the photosynthetic efficiency. Elevated CO2 led to a significantincrease in photosynthesis and WUE. The improved water and energysupply was used to increase the investment in mechanisms reducingwater loss and oxidative stress (thicker cell walls and cuticles,a higher chlorophyll and carotenoid content, higher SOD activity),resulting in more intact thylakoids. As these mechanisms canimprove survival under salinity, A. tripolium seems to be apromising cash crop halophyte which can help in desalinizingand reclaiming degraded land. Key words: Aster tripolium, cash crop halophyte, elevated CO2, gas exchange, oxidative stress, photosynthesis, salt tolerance, ultrastructure, water use efficiency Received 29 July 2008; Revised 8 October 2008 Accepted 9 October 2008  相似文献   

20.
The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar   总被引:2,自引:0,他引:2  
Genes in the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1)family have been shown to be important in the control of theswitch between vegetative and reproductive growth in severalplant species. We isolated nine members of the FT/TFL1 familyfrom Lombardy poplar (Populus nigra var. italica Koehne). Sequenceanalysis of the members of the FT/TFL1 family revealed considerablehomology within their coding regions both among family membersand to the members of the same family in Arabidopsis, tomatoand grapevine. Moreover, members of this family in all fourspecies examined display a common exon–intron organization.Phylogenetic analysis revealed that the genes fall into fourdifferent clades: two into the TFL1 clade; five into the FTclade; and one each into the MOTHER OF FT AND TFL1 and BROTHEROF FT AND TFL1 clades. One gene in the TFL1 clade, PnTFL1, isexpressed in vegetative meristems, and transgenic Arabidopsisthat ectopically expressed PnTFL1 had a late-flowering phenotype.The expression patterns of two genes in the FT clade, PnFT1and PnFT2, suggested a role for them in the promotion of flowering,and transgenic Arabidopsis that ectopically expressed eitherPnFT1 or PnFT2 had an early-flowering phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号