首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutralization of human immunodeficiency virus type 1 (HIV-1) infection with soluble CD4 (sCD4) can be achieved over a broad range of concentrations for different virus strains. Laboratory virus strains passaged in transformed T-cell lines are typically sensitive to sCD4 neutralization, whereas primary virus isolates require over 100-fold-higher sCD4 concentrations. Using recombinant viruses generated from a laboratory strain, HIV-1NL4-3, and a primary macrophagetropic strain, HIV-1JR-FL, we mapped a region of gp120 important for determining sensitivity to sCD4 neutralization. This same region has previously been defined as important for macrophage and transformed T-cell line tropism and includes the V3 neutralization domain but does not include regions of gp120 that have been shown to be most important for CD4 binding.  相似文献   

2.
Previous studies of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein-mediated membrane fusion have focused on laboratory-adapted T-lymphotropic strains of the virus. The goal of this study was to characterize membrane fusion mediated by a primary HIV-1 isolate in comparison with a laboratory-adapted strain. To this end, a new fusion assay was developed on the basis of the principle of resonance energy transfer, using HeLa cells stably transfected with gp120/gp41 from the T-lymphotropic isolate HIV-1LA1 or the macrophage-tropic primary isolate HIV-1JR-FL. These cells fused with CD4+ target cell lines with a tropism mirroring that of infection by the two viruses. Of particular note, HeLa cells expressing HIV-1JR-FL gp120/gp41 fused only with PM1 cells, a clonal derivative of HUT 78, and not with other T-cell or macrophage cell lines. These results demonstrate that the envelope glycoproteins of these strains play a major role in mediating viral tropism. Despite significant differences exhibited by HIV-1JR-FL and HIV-1LAI in terms of tropism and sensitivity to neutralization by CD4-based proteins, the present study found that membrane fusion mediated by the envelope glycoproteins of these viruses had remarkably similar properties. In particular, the degree and kinetics of membrane fusion were similar, fusion occurred at neutral pH and was dependent on the presence of divalent cations. Inhibition of HIV-1JR-FL envelope glycoprotein-mediated membrane fusion by soluble CD4 and CD4-IgG2 occurred at concentrations similar to those required to neutralize this virus. Interestingly, higher concentrations of these agents were required to inhibit HIV-1LAI envelope glycoprotein-mediated membrane fusion, in contrast to the greater sensitivity of HIV-1LAI virions to neutralization by soluble CD4 and CD4-IgG2. This finding suggests that the mechanisms of fusion inhibition and neutralization of HIV-1 are distinct.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.  相似文献   

4.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

6.
HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited ≈1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.  相似文献   

7.
To test whether antibodies that are neutralizing or nonneutralizing for human immunodeficiency virus type 1 (HIV-1) primary isolates can be distinguished by their affinities for the oligomeric envelope glycoproteins, we selected HIV-1(JR-FL) as a model primary virus and a panel of 13 human monoclonal antibodies (MAbs) and evaluated three parameters: (i) half-maximal binding to recombinant monomeric envelope, gp120(JR-FL); (ii) half-maximal binding to oligomeric envelope of HIV-1(JR-FL) expressed on the surface of transfected 293 cells; and (iii) neutralization of HIV-1(JR-FL) in a peripheral blood mononuclear cell-based neutralization assay. Two conclusions can be drawn from these experiments. First, we confirm that antibody interactions with monomeric gp120 do not predict primary virus neutralization. Second, we show that neutralization correlates qualitatively with the relative affinity of an antibody for the oligomeric envelope glycoproteins, at least for HIV-1(JR-FL).  相似文献   

8.
Primary isolates of human immunodeficiency virus type 1 (HIV-1) are much less sensitive to neutralization by soluble CD4 (sCD4) and sCD4-immunoglobulin (Ig) chimeras (CD4-IgG) than are HIV-1 strains adapted to growth in cell culture. We demonstrated that there are significant reductions (10- to 30-fold) in the binding of sCD4 and CD4-IgG to intact virions of five primary isolates compared with sCD4-sensitive, cell culture-adapted isolates RF and IIIB. However, soluble envelope glycoproteins (gp120) derived from the primary isolate virions, directly by detergent solubilization or indirectly by recombinant DNA technology, differed in affinity from RF and IIIB gp120 by only one- to threefold. The reduced binding of sCD4 to these primary isolate virions must therefore be a consequence of the tertiary or quaternary structure of the envelope glycoproteins in their native, oligomeric form on the viral surface. In addition, the rate and extent of sCD4-induced gp120 shedding from these primary isolates was lower than that from RF. We suggest that reduced sCD4 binding and increased gp120 retention together account for the relative resistance of these primary isolates to neutralization by sCD4 and CD4-IgG and that virions of different HIV-1 isolates vary both in the mechanism of sCD4 binding and in subsequent conformational changes in their envelope glycoproteins.  相似文献   

9.
We have characterized sera from healthy volunteers immunized with a monomeric recombinant gp120 (rgp120) derived from a CCR5/CXCR4 (R5X4)-using subtype B isolate of human immunodeficiency virus type (HIV-1), HIV-1W61D, in comparison to sera from long-term HIV-1-infected individuals, using homologous reagents. Sera from vaccinees and HIV-1 positive subjects had similar binding titers to native monomeric rgp120W61D and showed a similar titer of antibodies inhibiting the binding of soluble CD4 (sCD4) to rgp120W61D. However, extensive peptide binding studies showed that the overall pattern of recognition of vaccinee and HIV-1-positive sera is different, with vaccinee sera displaying a wider and more potent recognition of linear V1/V2 and V3 domain epitopes. Neutralization of homologous HIV-1W61D or heterologous HIV-1M2424/4 peripheral blood mononuclear cell (PBMC)-derived virus lines by vaccinee sera could be achieved, but only after adaptation of the viruses to T-cell lines and was quickly lost on readaptation to growth in PBMC. Sera from HIV-positive individuals were able to neutralize both PBMC-grown and T-cell line-adapted viruses. Interestingly, rgp120W61D was recognized by monoclonal antibodies previously shown to neutralize primary HIV-1 isolates. The use of very potent adjuvants and R5X4 rgp120 led to an antibody response equivalent in binding activity and inhibition of binding of sCD4 to gp120 to that of HIV-positive individuals but did not lead to the induction of antibodies capable of neutralizing PBMC-grown virus.  相似文献   

10.
We previously described the adaptation of the neutralization-sensitive human immunodeficiency virus type 1 (HIV-1) strain IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker. During long-term propagation of this resistant isolate, designated FF3346, on primary peripheral blood leukocytes in vitro, an HIV-1 variant appeared that had regained sensitivity to neutralization by soluble CD4 (sCD4) and the broadly neutralizing monoclonal antibody b12. When an early passage of FF3346 was subjected to limiting-dilution culture in peripheral blood mononuclear cells, eight virus variants with various degrees of neutralization resistance were isolated. Two of them, the sCD4 neutralization-resistant variant LW_H8(res) and the sCD4 neutralization-sensitive variant LW_G9(sens), were selected for further study. Interestingly, these two viruses were equally resistant to neutralization by agents that recognize domains other than the CD4 binding site. Site-directed mutagenesis revealed that the increased neutralization sensitivity of variant LW_G9(sens) resulted from only two changes, an Asn-to-Ser substitution at position 164 in the V2 loop and an Ala-to-Glu substitution at position 370 in the C3 domain of gp120. In agreement with this notion, the affinity of b12 for monomeric gp120 containing the N164S and A370E substitutions in the background of the molecular clone LW_H8(res) was higher than its affinity for the parental gp120. Surprisingly, no correlation was observed between CD4 binding affinity for monomeric gp120 and the level of neutralization resistance, suggesting that differences in sCD4 neutralization sensitivity between these viruses are only manifested in the context of the tertiary or quaternary structure of gp120 on the viral surface. The results obtained here indicate that the neutralization-sensitive strain IIIB can become neutralization resistant in vivo under selective pressure by neutralizing antibodies but that this resistance may be easily reversed in the absence of immunological pressure.  相似文献   

11.
A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.  相似文献   

12.
Identifying the viral epitopes targeted by broad neutralizing antibodies (NAbs) that sometimes develop in human immunodeficiency virus type 1 (HIV-1)-infected subjects should assist in the design of vaccines to elicit similar responses. Here, we investigated the activities of a panel of 24 broadly neutralizing plasmas from subtype B- and C-infected donors using a series of complementary mapping methods, focusing mostly on JR-FL as a prototype subtype B primary isolate. Adsorption with gp120 immobilized on beads revealed that an often large but variable fraction of plasma neutralization was directed to gp120 and that in some cases, neutralization was largely mediated by CD4 binding site (CD4bs) Abs. The results of a native polyacrylamide gel electrophoresis assay using JR-FL trimers further suggested that half of the subtype B and a smaller fraction of subtype C plasmas contained a significant proportion of NAbs directed to the CD4bs. Anti-gp41 neutralizing activity was detected in several plasmas of both subtypes, but in all but one case, constituted only a minor fraction of the overall neutralization activity. Assessment of the activities of the subtype B plasmas against chimeric HIV-2 viruses bearing various fragments of the membrane proximal external region (MPER) of HIV-1 gp41 revealed mixed patterns, implying that MPER neutralization was not dominated by any single specificity akin to known MPER-specific monoclonal Abs. V3 and 2G12-like NAbs appeared to make little or no contribution to JR-FL neutralization titers. Overall, we observed significant titers of anti-CD4bs NAbs in several plasmas, but approximately two-thirds of the neutralizing activity remained undefined, suggesting the existence of NAbs with specificities unlike any characterized to date.  相似文献   

13.
The relative resistance of human immunodeficiency virus type 1 (HIV-1) primary isolates (PIs) to neutralization by a wide range of antibodies remains a theoretical and practical barrier to the development of an effective HIV vaccine. One model to account for the differential neutralization sensitivity between Pls and laboratory (or T-cell line-adapted [TCLA]) strains of HIV suggests that the envelope protein (Env) complex is made more accessible to antibody binding as a consequence of adaptation to growth in established cell lines. Here, we revisit this question using genetically related PI and TCLA viruses and molecularly cloned env genes. By using complementary techniques of flow cytometry and virion binding assays, we show that monoclonal antibodies targeting the V3 loop, CD4-binding site, CD4-induced determinant of gp120, or the ectodomain of gp41 bind equally well to PI and TCLA Env complexes, despite large differences in neutralization outcome. The data suggest that the differential neutralization sensitivity of PI and TCLA viruses may derive not from differences in the initial antibody binding event but rather from differences in the subsequent functioning of the PI and TCLA Envs during virus entry. An understanding of these as yet undefined differences may enhance our ability to generate broadly neutralizing HIV vaccine immunogens.  相似文献   

14.
A panel of primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates that infected several CD4+ T-cell lines, including MT-2 and C8166, were tested for infection of blood-derived macrophages. Infectivity titers for C8166 cells and macrophages demonstrated that primary SI strains infected macrophages much more efficiently than T-cell line-adapted HIV-1 strains such as LAI and RF. These primary SI strains were therefore dual-tropic. Nine biological clones of two SI strains, prepared by limiting dilution, had macrophage/C8166 infectivity ratios similar to those of their parental viruses, indicating that the dual-tropic phenotype was not due to a mixture of non-SI/macrophage-tropic and SI/T-cell tropic viruses. We tested whether the primary SI strains used either Lestr (fusin) or CCR5 as coreceptors. Infection of cat CCC/CD4 cells transiently expressing Lestr supported infection by T-cell line-adapted strains including LAI, whereas CCC/CD4 cells expressing CCR5 were sensitive to primary non-SI strains as well as to the molecularly cloned strains SF-162 and JR-CSF. Several primary SI strains, as well as the molecularly cloned dual-tropic viruses 89.6 and GUN-1, infected both Lestr+ and CCR5+ CCC/CD4 cells. Thus, these viruses can choose between Lestr and CCR5 for entry into cells. Interestingly, some dual-tropic primary SI strains that infected Lestr+ cells failed to infect CCR5+ cells, suggesting that these viruses may use an alternative coreceptor for infection of macrophages. Alternatively, CCR5 may be processed or presented differently on cat cells so that entry of some primary SI strains but not others is affected.  相似文献   

15.
We have analyzed the binding of soluble CD4 (sCD4) to human immunodeficiency virus type 1 (HIV-1) virions (isolates IIIB and RF) at 4 and 37 degrees C by using a combination of gel exclusion chromatography and enzyme-linked immunosorbent assay detection systems. The sCD4 binding curve at 37 degrees C indicates that the affinity of the interaction of sCD4 with gp120 on the virion surface is indistinguishable from the affinity of sCD4 for the equivalent concentration of soluble gp120. At 4 degrees C, however, the affinity of sCD4 for virion-bound gp120 but not for soluble gp120 is reduced by about 20-fold. Binding of sCD4 (greater than 0.2 microgram/ml) to virions at 37 degrees C but not 4 degrees C induces the rapid dissociation of a major proportion of gp120 from gp41 on the virion surface. This dissociation requires occupancy by sCD4 of multiple (probably two) binding sites on a gp120-gp41 oligomer. At 37 degrees C there are two components to the neutralizing action of sCD4 on HIV-1; reversible, competitive inhibition at low sCD4 concentrations (less than 0.2 microgram/ml) and essentially irreversible inhibition due to gp120 loss at higher sCD4 concentrations. At 4 degrees C, sCD4 neutralizes HIV infectivity by competitive inhibition alone. These findings may have implications for the HIV-CD4+ cell binding and fusion reactions and the mechanism by which sCD4 blocks infectivity.  相似文献   

16.
Current human immunodeficiency virus type 1 (HIV-1) envelope vaccine candidates elicit high antibody binding titers with neutralizing activity against T-cell line-adapted but not primary HIV-1 isolates. Serum antibodies from these human vaccine recipients were also found to be preferentially directed to linear epitopes within gp120 that are poorly exposed on native gp120. Systemic immunization of rabbits with an affinity-purified oligomeric gp160 protein formulated with either Alhydrogel or monophosphoryl lipid A-containing adjuvants resulted in the induction of high-titered serum antibodies that preferentially bound epitopes exposed on native forms of gp120 and gp160, recognized a restricted number of linear epitopes, efficiently bound heterologous strains of monomeric gp120 and cell surface-expressed oligomeric gp120/gp41, and neutralized several strains of T-cell line-adapted HIV-1. Additionally, those immune sera with the highest oligomeric gp160 antibody binding titers had neutralizing activity against some primary HIV-1 isolates, using phytohemagglutinin-stimulated peripheral blood mononuclear cell targets. Induction of an antibody response preferentially reactive with natively folded gp120/gp160 was dependent on the tertiary structure of the HIV-1 envelope immunogen as well as its adjuvant formulation, route of administration, and number of immunizations administered. These studies demonstrate the capacity of a soluble HIV-1 envelope glycoprotein vaccine to elicit an antibody response capable of neutralizing primary HIV-1 isolates.  相似文献   

17.
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.  相似文献   

18.
Two assays for measuring inhibition of human immunodeficiency virus type 1 (HIV-1) infection by soluble CD4 (sCD4) are described. Experiments in which sCD4, HIV-1, and cell concentrations and sequence of combination, noninfectious/infectious particle ratio, and temperature were varied produced results that support the conclusion that sCD4 inhibits HIV-1 infection by two mechanisms: reversible blockage of receptor binding and irreversible inactivation of infectivity. Fresh isolates obtained from HIV-1-infected persons were tested in both assays and found to be more resistant to both mechanisms of sCD4-mediated inhibition than multiply passaged laboratory strains. Binding studies revealed similar affinities for sCD4 in detergent lysates of sensitive and resistant strains at both 4 and 37 degrees C. The avidity of intact virions for sCD4 was lower at 4 than at 37 degrees C, and in the presence of excess sCD4, less sCD4 was bound at 4 than at 37 degrees C. The avidity differences were similar for fresh isolates and laboratory strains. However, fresh isolates were more resistant to sCD4-induced shedding of envelope glycoprotein gp120 from intact virions than was the laboratory strain. Relative resistance to sCD4 by certain isolates does not represent a lower intrinsic affinity of their envelope for sCD4 or a lower capacity for sCD4 binding. Rather, an event that occurs after binding may account for the differences. This postbinding event or feature may be determined by regions of the envelope outside the CD4 binding site.  相似文献   

19.
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.  相似文献   

20.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号