首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site.  相似文献   

2.
GABA(A) receptors are chloride ion channels that can be opened by GABA, the most important inhibitory transmitter in the CNS. In the mammalian brain the majority of these pentameric receptors is composed of two alpha, two beta and one gamma subunit. To achieve the correct order of subunits around the pore, each subunit must form specific contacts via its plus (+) and minus (-) side. To identify a sequence on the beta3 subunit important for assembly, we generated various full-length or truncated chimeric beta3 constructs and investigated their ability to assemble with alpha1 and gamma2 subunits. It was demonstrated that replacement of the sequence beta3(76-89) by the homologous alpha1 sequence impaired assembly with alpha1 but not with gamma2 subunits in alpha1beta3gamma2-GABA(A) receptors. Other experiments indicated that assembly was impaired via the beta3(-) side of the chimeric subunit. Within the sequence beta3(76-89) the sequence beta3(85-89) seemed to be of primary importance for assembly with alpha1 subunits. A comparison with the structure of the acetylcholine-binding protein supports the conclusion that the sequence beta3(85-89) is located at the beta3(-) side and indicates that it contains amino acid residues that might directly interact with the (+) side of the neighbouring alpha1 subunit.  相似文献   

3.
Comparative models of GABA(A) receptors composed of alpha1 beta3 gamma2 subunits were generated using the acetylcholine-binding protein (AChBP) as a template and were used for predicting putative engineered cross-link sites between the alpha1 and the gamma2 subunit. The respective amino acid residues were substituted by cysteines and disulfide bond formation between subunits was investigated on co-transfection into human embryonic kidney (HEK) cells. Although disulfide bond formation between subunits could not be observed, results indicated that mutations studied influenced assembly of GABA(A) receptors. Whereas residue alpha1A108 was important for the formation of assembly intermediates with beta3 and gamma2 subunits consistent with its proposed location at the alpha1(+) side of GABA(A) receptors, residues gamma2T125 and gamma2P127 were important for assembly with beta3 subunits. Mutation of each of these residues also caused an impaired expression of receptors at the cell surface. In contrast, mutated residues alpha1F99C, alpha1S106C or gamma2T126C only impaired the formation of receptors at the cell surface when co-expressed with subunits in which their predicted interaction partner was also mutated. These data are consistent with the prediction that the mutated residue pairs are located close to each other.  相似文献   

4.
The prevalence of aromatic residues in the ligand binding site of the GABAA receptor, as with other cys‐loop ligand‐gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β2Tyr97, β2Tyr157, and β2Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK‐293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABAA receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β2Tyr157 and β2Tyr205 are more detrimental than β2Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process.  相似文献   

5.
P2X receptor subunits have intracellular N and C termini, two membrane-spanning domains, and an extracellular loop of about 280 amino acids. We expressed the rat P2X(2) receptor in human embryonic kidney cells, and used alanine-scanning mutagenesis on 30 residues with polar side chains conserved among the seven rat P2X receptor subunits. This identified a region proximal to the first transmembrane domain which contained 2 lysine residues that were critical for the action of ATP (Lys(69) and Lys(71)). We substituted cysteines in this region (Asp(57) to Asp(71)) and found that for S65C and I67C ATP-evoked currents were inhibited by methanethiosulfonates. At I67C, the inhibition by negatively charged ethylsulfonate and pentylsulfonate derivatives could be overcome by increasing the ATP concentration, consistent with a reduced affinity of ATP binding. The inhibitory action of the methanethiosulfonates was prevented by pre-exposure to ATP, suggesting occlusion of the binding site. Finally, introduction of negative charges into the receptor by mutagenesis at this position (I67E and I67D) also gave receptors in which the ATP concentration-response curve was right-shifted. The results suggest that residues close to Ile(67) contribute to the ATP-binding site.  相似文献   

6.
The gamma-aminobutyric acid (GABA) binding pocket within the GABA(A) receptor complex has been suggested to contain arginine residues. The aim of this study was to test this hypothesis by mutating arginine residues potentially contributing to the formation of a GABA binding pocket. Thus, six arginines conserved in human GABA(A) receptor alpha subunits (arginine 34, 70, 77, 123, 135, and 224) as well as two nonconserved arginines (79 and 190), all located in the extracellular N-terminal segment of the alpha(5) subunit, were substituted by lysines. The individual alpha(5) subunit mutants were coexpressed with human beta(2) and gamma(2s) GABA(A) receptor subunits in Chinese hamster ovary cells by transient transfection. Electrophysiological whole-cell patch-clamp recordings show that, of the eight arginine residues tested, the two arginines at positions 70 and 123 appear to be essential for the GABA-gated chloride current because the EC(50) values of the two mutant constructs increase >100-fold compared with the wild-type alpha(5),beta(2), gamma(2s) GABA(A) receptor. However, diazepam and allopregnanolone modulation and pentobarbital stimulation properties are unaffected by the introduction of lysines at positions 70 and 123. A double mutant carrying lysine substitutions at positions 70 and 123 is virtually insensitive to GABA, suggesting alterations of one or more GABA binding sites.  相似文献   

7.
A hypothesis concerning two distinct classes of amino acid residues in some regulatory binding sites is proposed. The affinity residues are those that are unable to transduce the ligand information signal but are responsible for overcoming the barrier for the attachment of a ligand to its binding site while the effector residues transfer the binding signal to the other functional part of the protein, which then undergoes a non-equilibrium energetic cycle induced by interaction with the ligand.As an example, the purine nucleotide inhibition of H+ transport through the uncoupling protein of brown adipose tissue mitochondria is discussed; there is a concentration range in which the nucleotide is bound but does not inhibit H+ transport. This is interpreted in terms of inaccessibility of the effector residues inducing H+ transport inhibition below a certain threshold concentration.  相似文献   

8.
9.
The ATP-sensitive potassium (K(ATP)) channel links cell metabolism to membrane excitability. Intracellular ATP inhibits channel activity by binding to the Kir6.2 subunit of the channel, but the ATP binding site is unknown. Using cysteine-scanning mutagenesis and charged thiol-modifying reagents, we identified two amino acids in Kir6.2 that appear to interact directly with ATP: R50 in the N-terminus, and K185 in the C-terminus. The ATP sensitivity of the R50C and K185C mutant channels was increased by a positively charged thiol reagent (MTSEA), and was reduced by the negatively charged reagent MTSES. Comparison of the inhibitory effects of ATP, ADP and AMP after thiol modification suggests that K185 interacts primarily with the beta-phosphate, and R50 with the gamma-phosphate, of ATP. A molecular model of the C-terminus of Kir6.2 (based on the crystal structure of Kir3.1) was constructed and automated docking was used to identify residues interacting with ATP. These results support the idea that K185 interacts with the beta-phosphate of ATP. Thus both N- and C-termini may contribute to the ATP binding site.  相似文献   

10.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

11.
Based on a pharmacophore model of the benzodiazepine-binding site of GABAA receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, Ki values of around 0.20 nM were determined. They show a structural resemblance with the previously described 2-phenyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-ones (II) and 2-phenyl-[1,2,4]triazolo[1,5-a]quinoxalin-4(5H)-one (III). The 9-bromo substituted compounds 8a-d were prepared in an 8-step synthesis in an overall yield of approximately 40%, and a library of 9-substituted analogues was prepared by cross-coupling reactions. Compound 8e, 21, 22, and 24 were tested on recombinant rat ??1??3??2, ??2??3??2, ??3??3??2, and ??5??3??2 subtypes, and displayed selectivity for the ??1??3??2 isoform.  相似文献   

12.
13.
P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.  相似文献   

14.
Lipopolysaccharide binding protein (LBP) is a 60 kDa acute phase glycoprotein capable of binding to LPS of Gram-negative bacteria and facilitating its interaction with cellular receptors. This process is thought to be of great importance in systemic inflammatory reactions such as septic shock. A peptide corresponding to residues 86-99 of human LBP (LBP86-99) has been reported to bind specifically with high affinity the lipid A moiety of LPS and to inhibit the interaction of LPS with LBP. We identified essential amino acids in LBP86-99 for binding to LPS by using a peptide library corresponding to the Ala-scanning of human LBP residues 86-99. Amino acids Trp91 and Lys92 were indispensable for peptide-LPS interaction and inhibition of LBP-LPS binding. In addition, several alanine-substituted synthetic LBP-derived peptides inhibited LPS-LBP interaction. Substitution of amino acids Arg94, Lys95 and Phe98 by Ala increased the inhibitory effect. The mutant Lys95 was the most active in blocking LPS binding to LBP. These findings emphasize the importance of single amino acids in the LPS binding capacity of small peptides and may contribute to the development of new drugs for use in the treatment of Gram-negative bacterial sepsis.  相似文献   

15.
Studies on animal models of epilepsy and cerebellar ataxia, e.g., stargazer mice (stg) have identified changes in the GABAergic properties of neurones associated with the affected brain loci. Whether these changes contribute to or constitute homeostatic adaptations to a state of altered neuronal excitability is as yet unknown. Using cultured cerebellar granule neurones from control [+/+; alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR)-competent, Kainate receptor (KAR)-competent] and stg (AMPAR-incompetent, KAR-competent), we investigated whether non-NMDA receptor (NMDAR) activity regulates GABA(A) receptor (GABAR) expression. Neurones were maintained in 5 mmol/L KCl-containing basal media or depolarizing media containing either 25 mmol/L KCl or the non-NMDAR agonist kainic acid (KA) (100 micromol/L). KCl- and KA-mediated depolarization down-regulated GABAR alpha1, alpha6 and beta2, but up-regulated alpha4, beta3 and delta subunits in +/+ neurones. The KCl-evoked but not KA-evoked effects were reciprocated in stg neurones compatible with AMPAR-regulation of GABAR expression. Conversely, GABAR gamma2 expression was insensitive to KCl-mediated depolarization, but was down-regulated by KA-treatment in a 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-reversible manner in +/+ and stg neurones compatible with a KAR-mediated response. KA-mediated up-regulation of GABAR alpha4, beta3 and delta was inhibited by L-type voltage-gated calcium channel (L-VGCC) blockers and the Ca2+/calmodulin-dependent protein kinase inhibitor, 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinoline sulfonic acid ester (KN-62). Up-regulation of GABAR alpha4 and beta3 was also prevented by calcineurin (CaN) inhibitors, FK506 and cyclosporin A. Down-regulation of GABAR alpha1, alpha6 and beta2 was independent of L-VGCC activity, but was prevented by inhibitors of CaN. Thus, we provide evidence that a KAR-mediated and at least three mutually exclusive AMPAR-mediated signalling mechanisms regulate neuronal GABAR expression.  相似文献   

16.
血红素是一种重要的、常用的配体,在电子传递、催化、信号转导和基因表达等方面发挥着重要作用,准确预测蛋白质与血红素相互作用的结合残基是结构生物信息学的主要挑战之一。本文下载整理了Biolip数据库中HEME配体与蛋白质结合的信息,统计分析了结合残基和非结合残基的氨基酸组分和位点保守性信息并将其作为预测特征参数,用Fisher-PSSM判别法识别HEME结合残基,计算结果表明优化特征参数的Fisher-PSSM判别法得到了较好的预测结果。  相似文献   

17.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

18.
Murine gamma-aminobutyric acid (GABA) type A homomeric receptors made of beta1 subunits are profoundly different, when expressed in Xenopus oocytes, from beta3 homomeric receptors. Application of the intravenous general anesthetic pentobarbital, etomidate, or propofol to beta3 homomeric receptors allows current flow. In contrast, beta1 homomers do not respond to any of these agents. Through construction of chimeric beta1/beta3 receptors, we identified a single amino acid that determines the pharmacological difference between the two beta subunits. When the serine residue present in the wild-type nonresponsive beta1 subunit is replaced by an asparagine found in the same position in the beta3 subunit, the resulting point-mutated beta1S265N forms receptors responsive to intravenous general anesthetics, like the wild-type beta3 subunits. Conversely, after mutation of the wild-type beta3 to beta3N265S, the homomeric receptor loses its ability to respond to these same general anesthetics. Wild-type-to-mutant titration experiments showed that the nonresponsive phenotype is dominant: A single nonresponsive residue within a pentameric receptor is sufficient to render the receptor nonresponsive. In alpha1betax or alpha1betaxgamma2 heteromeric receptors, the same residue manifests as a partial determinant of the degree of potentiation of the GABA-induced current by some general anesthetics. The location of this amino acid at the extracellular end of the second transmembrane segment, its influence in both homomeric and heteromeric receptor function, and its dominant behavior suggest that this residue of the beta subunit is involved in an allosteric modulation of the receptor.  相似文献   

19.
The major isoforms of GABA(A) receptors are thought to be composed of two alpha, two beta and one gamma subunit(s). GABA(A) receptors containing two beta1 subunits respond differently to the anticonvulsive compound loreclezole and the general anaesthetic etomidate than receptors containing two beta2 subunits. Receptors containing beta2 subunits show a much larger allosteric stimulation by these agents than those containing beta1 subunits. We were interested to know how receptors containing both beta1 and beta2 subunits, in different positions respond to loreclezole and etomidate. To answer this question, subunits were fused at the DNA level to form dimeric and trimeric subunits. Concatenated receptors (alpha1-beta1-alpha1/gamma2-beta1, alpha1-beta2-alpha1/gamma2-beta1, alpha1-beta1-alpha1/gamma2-beta2 and alpha1-beta2-alpha1/gamma2-beta2) were expressed in Xenopus ooctyes and functionally compared in their response to the agonist GABA and to the positive allosteric modulators, loreclezole and etomidate. We have shown that (I) in the presence of both beta1 and beta2 subunits in the same pentamer (mixed receptors) direct gating by etomidate is similar to exclusively beta1 containing receptors; (II) In mixed receptors, stimulation by etomidate assumed characteristics intermediate to exclusively beta1 or beta2 containing receptors, but the values for the concentrations < 10 microM were always much closer to those observed in alpha1-beta1-alpha1/gamma2-beta1 receptors; and (III) mixed receptors show no positional effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号