首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

2.
Molecular analysis of GISTs: evaluation of sequencing and dHPLC   总被引:3,自引:0,他引:3  
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract and are characterized by mutations in the proto-oncogene KIT (c-kit). To date, the detection of genomic alterations of the c-kit gene has been based mostly on direct sequencing. However, sequencing is an expensive and time-consuming approach. Since the technology of WAVE DNA Fragment Analysis System (Transgenomic, Inc., Worcester, MA) (dHPLC) is available in our laboratory, we decided to evaluate its use. Sixteen patients with small/large intestine, stomach tumors were included in the study. Immunohistochemical evaluation was performed on formalin-fixed, paraffin-embedded specimens with the polyclonal antibody CD117 for the KIT protein. After DNA extraction and isolation from paraffin-embedded sections, a nested PCR approach was applied to amplify sequences of exon 11 of the c-kit gene. dHPLC and the ABI Prism 310 Genetic Analyzer (Applied Biosystems, Bedford, MA) were used respectively for screening and identification of genomic alterations. Immunohistochemical analysis revealed strong and diffuse KIT expression in each of the 16 paraffin-embedded sections examined. dHPLC analysis in two temperatures showed the presence of genomic alterations in 8 out of 16 (50%) samples examined. Subsequently, sequence analysis of exon 11 in those samples revealed c-kit alterations in only 8 out of 16 (50%) samples. These were five deletions, one of which was an in-frame deletion one-point mutation and one insertion. Furthermore, the sensitivity of both methods was compared by using different mixtures of a wild-type and a sample with a deletion in exon 11. dHPLC was shown to be able to detect genomic alterations in all four different sample mixtures, whereas with sequence analysis genomic alterations were detected only in the 1:2 and 1:4 sample mixtures. In conclusion, we showed that dHPLC is an efficient and accurate, as well as a more sensitive, method for screening of genomic alterations in exon 11 of the c-kit gene, compared to sequence analysis.  相似文献   

3.
We report the development of a simple and inexpensive assay for the detection of DNA polymorphisms and mutations that is based on the modification of mismatched bases by potassium permanganate. Unlike the chemical cleavage of mismatch assay, which also exploits the reactivity of potassium permanganate to detect genomic variants, the assay we describe here does not require a cleavage manipulation and therefore does not require expensive or toxic chemicals or a separation step, as mismatches are detected using direct optical methods in a microplate format. Studies with individual deoxynucleotides demonstrated that the reactivity with potassium permanganate resulted in a specific colour change. Furthermore, studies with synthetic oligonucleotide heteroduplexes demonstrated that this colour change phenomenon could be applied to detect mismatched bases spectrophotometrically. A collection of plasmids carrying single point mutations in the mouse β-globin promoter region was used as a model system to develop a functional mutation detection assay. Finally, the assay was validated as 100% effective in detecting mismatches in a blinded manner using DNA from patients previously screened for mutations using established techniques, such as sequencing, SSCP and denaturing high-performance liquid chromatography (DHPLC) analysis in DNA fragments up to 300 bp in length.  相似文献   

4.
We have recently reported a novel finding that a candidate tumor suppressor gene prox1 suffered adenosine-to-inosine (A-to-I) RNA mutation without genomic mutation in a subset of human cancer cells and lost its function. Hence, screening of mutations in both cDNA and genomic DNA could be important in the analysis of causes for cancers. Here, we applied a sensitive, accurate, and simple method, called shifted termination assay (STA) for detection of an A-to-I RNA mutation (R334G) in prox1. We prepared PCR-amplified samples containing the target base of RNA mutation from cDNAs and genomic DNAs of various cell lines and clinical samples, to demonstrate that the STA method can be used to identify not only genomic mutations but also RNA mutations more effectively compared to sequencing. By means of STA, we found prox1 R334G RNA mutations but not genomic DNA mutations in 4 of 8 cases of esophageal cancers. This method can help us to detect RNA mutation effectively and progress research of a potential oncogenic principle.  相似文献   

5.
We have improved the methods for the standard competitive growth assay of human immunodeficiency virus type 1 (HIV-1). The cloning step for the mixed viral population and subsequent genotype analysis for arbitrary numbers of clones were excluded from procedures. Instead, a single nucleotide polymorphism (SNP)-detection step was devised for the determination of viral populations. The quantitative SNP-detection method can rapidly estimate the proportion of wild-type and mutant populations with high reproducibility. Consequently, this method allows manipulation of many samples within a short period. Using this new competitive growth assay, replicative fitness of drug-resistant HIV-1 containing an M46I amino acid mutation in the protease was assessed in the presence or absence of indinavir. Without indinavir, replicative fitness of wild-type HIV-1 surpassed that of M46I-mutated HIV-1, and the fraction of mutated virus was reduced to about 10% at passage #9. In contrast, the fraction of M46I-mutated virus increased to >90% at passage #5 in the presence of 26.4 nM indinavir. Almost identical results were obtained for L90M-mutated HIV-1 with or without saquinavir. HIV-1 can survive under indinavir pressure by acquiring M46I mutation, as with acquisition of the L90M mutation under saquinavir pressure. However, these mutations damage viral replicative fitness under natural conditions without any drugs. Subtle differences between wild-type and mutant viruses are thus easily detected using the improved method.  相似文献   

6.
Hereditary hemochromatosis (HH) is a disorder of iron metabolism that leads to iron overload in middle age and can be caused by homozygosity for the C282Y mutation in the HFE gene. Preliminary studies have estimated the frequency of this mutation at 0.5-1% in Italy, but this has not been verified on a large sample. We analyzed 1,331 Italian newborns for the C282Y mutation in the HFE gene using dried blood spots (DBS) from the Neonatal Screening Center in Turin, Italy. The mutation was assessed using a semi-automatable 5'-nuclease assay (TaqMan technology). We detected 55 heterozygotes and no homozygotes in our sampling, resulting in an overall frequency of 2.1% +/- 0.6 for the C282Y allele. Differences in allele frequency were observed, and ranged from 2.7% +/- 1.3 in samples from Northern Italy, to 1.7% +/- 0.9 in samples from Central-Southern Italy. The low frequency of the at-risk genotype for iron overload suggests that genetic screening for HFE in Italy would not be cost effective. The present study, in addition to defining C282Y frequency, documents detection of the major HFE mutation on routine DBS samples from neonatal screening programs using a semi-automatable, rapid, reliable, and relatively inexpensive approach.  相似文献   

7.
With next-generation DNA sequencing technologies, one can interrogate a specific genomic region of interest at very high depth of coverage and identify less prevalent, rare mutations in heterogeneous clinical samples. However, the mutation detection levels are limited by the error rate of the sequencing technology as well as by the availability of variant-calling algorithms with high statistical power and low false positive rates. We demonstrate that we can robustly detect mutations at 0.1% fractional representation. This represents accurate detection of one mutant per every 1000 wild-type alleles. To achieve this sensitive level of mutation detection, we integrate a high accuracy indexing strategy and reference replication for estimating sequencing error variance. We employ a statistical model to estimate the error rate at each position of the reference and to quantify the fraction of variant base in the sample. Our method is highly specific (99%) and sensitive (100%) when applied to a known 0.1% sample fraction admixture of two synthetic DNA samples to validate our method. As a clinical application of this method, we analyzed nine clinical samples of H1N1 influenza A and detected an oseltamivir (antiviral therapy) resistance mutation in the H1N1 neuraminidase gene at a sample fraction of 0.18%.  相似文献   

8.
EGFR exon 19 deletion is an important indicator for tyrosine kinase inhibitor treatment in non-small cell lung cancer. However, detection of exon 19 deletions faces a challenge: there are more than 30 types of mutations reported at the hotspot. Moreover, considering the application in body fluid samples, assays with high sensitivity and specificity are necessary for the detection of rare mutant alleles. Here, we describe a single tube reaction which could detect at least 29 types of exon 19 deletions with only an unlabeled peptide nucleic acid (PNA) clamp and a pair of DNA probes. The PNA clamp was used to inhibit amplification of wild-type templates; and the DNA probes were used to generate melting peaks for multiple types of mutations. Under optimal condition, the assay was able to detect as low as 0.01% mutant DNA in wild-type background, and had a limit of detection of 10 pg genomic DNA. Feasibility of the assay was tested in body fluid samples from lung cancer patients. The assay detected 100% and 60% of deletions in pleural effusions and plasma, respectively. We believe the present assay can be used in the clinical laboratories and has potential to be adapted for a microfluidic device.  相似文献   

9.
We describe here an efficient microarray-based multiplex assay to detect Korean-specific mutations in breast cancer susceptibility gene BRCA1 using direct probe/target hybridization. Allele-specific oligonucleotides were covalently immobilized on an aldehyde-activated glass slide to prepare an oligonucleotide chip. From a wild-type sample, a two-step method was used to generate labeled multiplex polymerase chain reaction (PCR) amplification products of genomic regions containing the mutation sites. Amino allyl-dUTP, an amine-modified nucleotide, was incorporated during multiplex PCR amplifications and a monofunctional form of cyanine 3 dye was subsequently attached to the reactive amine group of the PCR products. Hybridization of the labeled PCR products to the oligonucleotide chip successfully identified all of the genotypes for the selected mutation sites. This work demonstrates that oligonucleotides chip-based analysis is a good candidate for efficient clinical testing for BRCA1 mutations when combined with the indirect strategy to prepare labeled target samples.  相似文献   

10.
Several diseases are characterized by the presence of point mutations, which are amenable to molecular detection using a number of methods such as PCR. However, certain mutations are particularly difficult to detect due to factors such as low abundance and the presence of special (e.g., oligonucleotide repeat) sequences. The mutation 7A in the oligoA sequence of exon 7 of the gene encoding the La autoantigen is difficult to detect at the DNA level, and even at the RNA level, due to both its estimated low abundance and its differentiation from the wild-type 8A sequence. This article describes a technique in which amplification of the excess wild-type 8A La sequence is suppressed by a peptide nucleic acid (PNA) during a nested PCR step. Detection of the amplified 7A mutant form was then performed by simple electrophoresis following a final primer extension step with an infrared dye-labeled primer. This technique allowed us to detect the mutation in 3 of 7 individuals harboring serum immunoglobulin G (IgG) antibodies reactive with a neo-B cell epitope in the 7A mutant protein product. We propose that this method is a viable screening test for mutations in regions containing simple polynucleotide repeats.  相似文献   

11.
Ligase-based detection of mononucleotide repeat sequences   总被引:4,自引:1,他引:4       下载免费PDF全文
Up to 15% of all colorectal cancers are considered to be replication error positive (RER(+)) and contain mutations at hundreds of thousands of microsatellite repeat sequences. Recently, a number of intragenic mononucleotide repeat sequences have been demonstrated to be targets for inactivating genes in RER(+)colorectal tumors. In this study, thermostable DNA ligases were tested for the ability to detect alterations in microsatellite sequences in colon tumor samples. Ligation profiles on mononucleotide repeat sequences were determined for four related thermostable DNA ligases, Thermus thermophilus ( Tth ) ligase, Thermus sp. AK16D ligase, Aquifex aeolicus ligase and the K294R mutant of the Tth ligase. While the limit of detection for point mutations was one mutation in 1000 wild-type sequences, the ability to detect a single base deletion in a 10 base mononucleotide repeat was one mutation in 100 wild-type sequences. Furthermore, the misligation error increased exponentially as the length of the mono-nucleotide repeat increased, and was 10% of the correct signal for a 19 base mononucleotide repeat. A fluorescent ligase-based assay [polymerase chain reaction/ligase detection reaction (PCR/LDR)] correlated with results obtained using a radioactive assay to detect instability within the TGF-beta Type II receptor gene. PCR/LDR was also used to detect the APCI1307K mononucleotide repeat allele which has a carrier frequency of 6.1% in Ashkenazi Jewish individuals. In a blind study, 30 samples that had been typed for the presence of the APCI1307K allele were tested. The PCR/LDR results correlated with those obtained using sequencing and allele-specific oligonucleotide hybridization for 16 samples carrying the mutation and 13 wild-type samples. Ligation assays that characterize mononucleotide repeats can be used to rapidly detect somatic mutations in tumors, and to screen for individuals who have a hereditary predisposition to develop colon cancer.  相似文献   

12.
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.  相似文献   

13.
A fluorogenic assay procedure with 4-methylumbelliferyl-beta-D-glucuronide incorporated into lauryl sulfate broth was evaluated to detect and confirm the presence of Escherichia coli in foods. Fluorescence is indicative of the presence of E. coli; extensive biochemical confirmation is unnecessary with this assay. The 4-methylumbelliferyl-beta-D-glucuronide assay was tested concurrently with our present methodology for detection of E. coli on 270 samples of raw ingredients and powdered food products. Total agreement between the two methods was 94.8%; there was a false-positive rate of 4.8% and no false-negatives. We found the 4-methylumbelliferyl-beta-D-glucuronide assay to be rapid, accurate, simple to perform, and inexpensive.  相似文献   

14.
A fluorogenic assay procedure with 4-methylumbelliferyl-beta-D-glucuronide incorporated into lauryl sulfate broth was evaluated to detect and confirm the presence of Escherichia coli in foods. Fluorescence is indicative of the presence of E. coli; extensive biochemical confirmation is unnecessary with this assay. The 4-methylumbelliferyl-beta-D-glucuronide assay was tested concurrently with our present methodology for detection of E. coli on 270 samples of raw ingredients and powdered food products. Total agreement between the two methods was 94.8%; there was a false-positive rate of 4.8% and no false-negatives. We found the 4-methylumbelliferyl-beta-D-glucuronide assay to be rapid, accurate, simple to perform, and inexpensive.  相似文献   

15.
We have developed and validated a rapid molecular screening protocol for toxigenic Clostridium difficile, that also enables the identification of the hypervirulent epidemic 027/NAP1 strain. We describe a multiplex real-time PCR assay, which detects the presence of the tcdA and tcdB genes directly in stool samples. In case of positive PCR results, a separate multiplex real-time PCR typing assay was performed targeting the tcdC gene frame shift mutation at position 117. We prospectively compared the results of the screening PCR with those of a cytotoxicity assay (CTA), and a rapid immuno-enzyme assay for 161 stool samples with a specific request for diagnosis of C. difficile infection (CDI). A total of 16 stool samples were positive by CTA. The screening PCR assay confirmed all 16 samples, and gave a PCR positive signal in eight additional samples. The typing PCR assay detected the tcdC Δ117 mutation in 2/24 samples suggesting the presence of the epidemic strain in these samples. This was confirmed by PCR ribotyping and sequencing of the tcdC gene. Using CTA as the “gold standard”, the sensitivity, specificity, positive predictive value, and negative predictive value, for the screening PCR were 100%, 94.4%, 66.7%, and 100%, respectively. In conclusion, PCR may serve as a rapid negative screening assay for patients suspected of having CDI, although the low PPV hamper the use of PCR as a standalone test. However, PCR results may provide valuable information for patient management and minimising the spread of the epidemic 027/NAP1 strain.  相似文献   

16.
We developed a two-in-one, polymerase chain reaction (PCR)-based method with a specific amplification step and a universal amplification step in one tube to screen for the presence of DNA variations. The method relies on fluorescence-labeled artificial nonhuman sequences for mutation detection. To document utility, we applied this method as a high-throughput capillary single-strand conformation polymorphism screening system to identify 30 mutations in the low-density lipoprotein receptor gene. The sensitivity of mutant allele detection compared to wild-type allele detection was 93%. We conclude that the "two-in-one PCR" is sensitive, simple, and cost effective.  相似文献   

17.
DNA signatures are nucleotide sequences that can be used to detect the presence of an organism and to distinguish that organism from all other species. Here we describe Insignia, a new, comprehensive system for the rapid identification of signatures in the genomes of bacteria and viruses. With the availability of hundreds of complete bacterial and viral genome sequences, it is now possible to use computational methods to identify signature sequences in all of these species, and to use these signatures as the basis for diagnostic assays to detect and genotype microbes in both environmental and clinical samples. The success of such assays critically depends on the methods used to identify signatures that properly differentiate between the target genomes and the sample background. We have used Insignia to compute accurate signatures for most bacterial genomes and made them available through our Web site. A sample of these signatures has been successfully tested on a set of 46 Vibrio cholerae strains, and the results indicate that the signatures are highly sensitive for detection as well as specific for discrimination between these strains and their near relatives. Our approach, whereby the entire genomic complement of organisms are compared to identify probe targets, is a promising method for diagnostic assay development, and it provides assay designers with the flexibility to choose probes from the most relevant genes or genomic regions. The Insignia system is freely accessible via a Web interface and has been released as open source software at: http://insignia.cbcb.umd.edu.  相似文献   

18.
Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of the target and bypass the targeted mechanism. For instance, mutations detected in KRAS/BRAF/NRAS genes can lead to EGFR-independent intracellular signaling pathway activation. Most patients with these mutations do not respond well to anti-EGFR treatment. In an effort to detect various mutations in FFPE tissue samples among multiple solid tumor types for patient stratification many mutation assays were evaluated. Since there were more than 30 specific mutations among three targeted RAS/RAF oncogenes that could activate MAPK pathway genes, a custom designed Single Nucleotide Primer Extension (SNPE) multiplexing mutation assay was developed and analytically validated as a clinical trial assay. Throughout the process of developing and validating the assay we overcame many technical challenges which include: the designing of PCR primers for FFPE tumor tissue samples versus normal blood samples, designing of probes for detecting consecutive nucleotide double mutations, the kinetics and thermodynamics aspects of probes competition among themselves and against target PCR templates, as well as validating an assay when positive control tumor tissue or cell lines with specific mutations are not available. We used Next Generation sequencing to resolve discordant calls between the SNPE mutation assay and Sanger sequencing. We also applied a triplicate rule to reduce potential false positives and false negatives, and proposed special considerations including pre-define a cut-off percentage for detecting very low mutant copies in the wild-type DNA background.  相似文献   

19.
Sulforhodamine B colorimetric assay for cytotoxicity screening   总被引:3,自引:0,他引:3  
The sulforhodamine B (SRB) assay is used for cell density determination, based on the measurement of cellular protein content. The method described here has been optimized for the toxicity screening of compounds to adherent cells in a 96-well format. After an incubation period, cell monolayers are fixed with 10% (wt/vol) trichloroacetic acid and stained for 30 min, after which the excess dye is removed by washing repeatedly with 1% (vol/vol) acetic acid. The protein-bound dye is dissolved in 10 mM Tris base solution for OD determination at 510 nm using a microplate reader. The results are linear over a 20-fold range of cell numbers and the sensitivity is comparable to those of fluorometric methods. The method not only allows a large number of samples to be tested within a few days, but also requires only simple equipment and inexpensive reagents. The SRB assay is therefore an efficient and highly cost-effective method for screening.  相似文献   

20.
Short oligonucleotide mass analysis (SOMA) is a technique by which small sequences of mutated and wild-type DNA, produced by PCR amplification and restriction digestion, are characterized by HPLC-electrospray ionization tandem mass spectrometry. We have adapted the method to specifically detect two common point mutations at codon 12 of the c-K-ras gene. Mutations in DNA from 121 colon tumor samples were identified by SOMA and validated by comparison with sequencing. SOMA correctly identified 26 samples containing the 12GAT mutation and four samples containing the 12AGT mutation. Sequencing did not reveal mutant DNA in three samples out of the 26 samples shown by SOMA to contain the 12GAT mutation. In these three samples, the presence of mutant DNA was confirmed by SOMA analysis after selective PCR amplification in the presence of BstN1 restriction enzyme. Additional mutations in codons 12 and 13 were revealed by sequencing in 24 additional samples, and their presence did not interfere with the correct identification of G to A or G to T mutations in codon 12. These results provide the basis for a sensitive and specific method to detect c-K-ras codon 12-mutated DNA at levels below 10–12% of wild-type DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号