首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

17β-hydroxysteroid dehydrogenases (17βHSDs) are important enzymes regulating the pool of bioactive steroids in the breast. The current study was undertaken in order to evaluate implications of 17βHSD14 in breast cancer, measuring 17βHSD14 protein expression in breast tumours.

Methods

An antibody targeting the 17βHSD14 antigen was generated and validated using HSD17B14-transfected cells and a peptide-neutralising assay. Tissue microarrays with tumours from 912 post-menopausal women diagnosed with lymph node-negative breast cancer, and randomised to adjuvant tamoxifen or no endocrine treatment, were analysed for 17βHSD14 protein expression with immunohistochemistry.

Results

Results were obtained from 847 tumours. Patients with oestrogen positive tumours with high 17βHSD14 expression had fewer local recurrences when treated with tamoxifen (HR 0.38; 95% C.I. 0.19–0.77, p = 0.007) compared to patients with lower tumoural 17βHSD14 expression, for whom tamoxifen did not reduce the number of local recurrences (HR 1.19; 95% C.I. 0.54–2.59; p = 0.66). No prognostic importance of 17βHSD14 was seen for systemically untreated patients.

Conclusions

Using a highly specific validated antibody for immunohistochemical analysis of a large number of breast tumours, we have shown that tumoural expression levels of 17βHSD14 can predict the outcome of adjuvant tamoxifen treatment in terms of local recurrence-free survival in patients with lymph node-negative ER+ breast cancer. The results need be verified to confirm any clinical relevance.  相似文献   

2.
Lin KY  Tai C  Hsu JC  Li CF  Fang CL  Lai HC  Hseu YC  Lin YF  Uen YH 《PloS one》2011,6(2):e17193

Background

Colorectal cancer (CRC) is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. The purpose of this study is to investigate the involvement of nuclear protein kinase CK2 α subunit (CK2α) in tumor progression, and in the prognosis of human CRC.

Methodology/Principal Findings

Expression levels of nuclear CK2α were analyzed in 245 colorectal tissues from patients with CRC by immunohistochemistry, quantitative real-time PCR and Western blot. We correlated the expression levels with clinicopathologic parameters and prognosis in human CRC patients. Overexpression of nuclear CK2α was significantly correlated with depth of invasion, nodal status, American Joint Committee on Cancer (AJCC) staging, degree of differentiation, and perineural invasion. Patients with high expression levels of nuclear CK2α had a significantly poorer overall survival rate compared with patients with low expression levels of nuclear CK2α. In multi-variate Cox regression analysis, overexpression of nuclear CK2α was proven to be an independent prognostic marker for CRC. In addition, DLD-1 human colon cancer cells were employed as a cellular model to study the role of CK2α on cell growth, and the expression of CK2α in DLD-1 cells was inhibited by using siRNA technology. The data indicated that CK2α-specific siRNA treatment resulted in growth inhibition.

Conclusions/Significance

Taken together, overexpression of nuclear CK2α can be a useful marker for predicting the outcome of patients with CRC.  相似文献   

3.

Introduction

Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis.

Methods

We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array.

Results

DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1.

Conclusions

These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.  相似文献   

4.

Background

To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC) — the particulate fraction of tobacco smoke — were examined.

Methods

The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs) were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and <5% apoptosis. Changes in gene expression and signaling responses were determined by RT-PCR, western blotting and immunocytofluorescence.

Results

NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK) kinase (MEK), and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2), demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml) or TNF-α (50 ng/ml) had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls.

Conclusion

The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.  相似文献   

5.
Gong C  Yao H  Liu Q  Chen J  Shi J  Su F  Song E 《PloS one》2010,5(12):e15630

Purpose

Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs) directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors.

Methods

Immunohistochemical staining(IHC) was used to examine the expression of aldehyde dehydrogenase 1 (ALDH1) and proliferating cell nuclear antigen, and TUNEL was used to detect the apoptosis index. The significance of various variables in patient survival was analyzed using a Cox proportional hazards model. The percentage of BT-ICs in breast cancer cell lines and primary breast tumors was determined by ALDH1 enzymatic assay, CD44+/CD24 phenotype and mammosphere formation assay.

Results

ALDH1 expression determined by IHC in primary breast cancers was associated with poor clinical response to neoadjuvant chemotherapy and reduced survival in breast cancer patients. Breast tumors that contained higher proportion of BT-ICs with CD44+/CD24 phenotype, ALDH1 enzymatic activity and sphere forming capacity were more resistant to neoadjuvant chemotherapy. Chemoresistant cell lines AdrR/MCF-7 and SK-3rd, had increased number of cells with sphere forming capacity, CD44+/CD24 phenotype and side-population. Regardless the proportion of T-ICs, FACS-sorted CD44+/CD24 cells that derived from primary tumors or breast cancer lines were about 10–60 fold more resistant to chemotherapy relative to the non- CD44+/CD24 cells and their parental cells. Furthermore, our data demonstrated that MDR1 (multidrug resistance 1) and ABCG2 (ATP-binding cassette sub-family G member 2) were upregulated in CD44+/CD24 cells. Treatment with lapatinib or salinomycin reduced the proportion of BT-ICs by nearly 50 fold, and thus enhanced the sensitivity of breast cancer cells to chemotherapy by around 30 fold.

Conclusions

These data suggest that the proportion of BT-ICs is associated with chemotherapeutic resistance of breast cancer. It highlights the importance of targeting T-ICs, rather than eliminating the bulk of rapidly dividing and terminally differentiated cells, in novel anti-cancer strategies.  相似文献   

6.
Du J  Xu R  Hu Z  Tian Y  Zhu Y  Gu L  Zhou L 《PloS one》2011,6(9):e25213

Background

Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.

Methodology/Principal Findings

In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.

Conclusions/Significance

Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.  相似文献   

7.

Introduction

Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors.

Methodology/Principal Findings

Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors.High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA.

Conclusion/Significance

BRCA1-IRIS overexpression triggers aggressive breast tumor formation, especially in patients with HER2+ or TN/BL subtypes. We propose that BRCA1-IRIS inhibition may be pursued as a novel therapeutic option to treat these aggressive breast tumor subtypes.  相似文献   

8.

Background

The sestrin family of stress-responsive genes (SESN1-3) are suggested to be involved in regulation of metabolism and aging through modulation of the AMPK-mTOR pathway. AMP-activated protein kinase (AMPK) is an effector of the tumour suppressor LKB1, which regulates energy homeostasis, cell polarity, and the cell cycle. SESN1/2 can interact directly with AMPK in response to stress to maintain genomic integrity and suppress tumorigenesis. Ionizing radiation (IR), a widely used cancer therapy, is known to increase sestrin expression, and acutely activate AMPK. However, the regulation of AMPK expression by sestrins in response to IR has not been studied in depth.

Methods and Findings

Through immunoprecipitation we observed that SESN2 directly interacted with the AMPKα1β1γ1 trimer and its upstream regulator LKB1 in MCF7 breast cancer cells. SESN2 overexpression was achieved using a Flag-tagged SESN2 expression vector or a stably-integrated tetracycline-inducible system, which also increased AMPKα1 and AMPKβ1 subunit phosphorylation, and co-localized with phosphorylated AMPKα-Thr127 in the cytoplasm. Furthermore, enhanced SESN2 expression increased protein levels of LKB1 and AMPKα1β1γ1, as well as mRNA levels of LKB1, AMPKα1, and AMPKβ1. Treatment of MCF7 cells with IR elevated AMPK expression and activity, but this effect was attenuated in the presence of SESN2 siRNA. In addition, elevated SESN2 inhibited IR-induced mTOR signalling and sensitized MCF7 cells to IR through an AMPK-dependent mechanism.

Conclusions

Our results suggest that in breast cancer cells SESN2 is associated with AMPK, it is involved in regulation of basal and IR-induced expression and activation of this enzyme, and it mediates sensitization of cancer cells to IR.  相似文献   

9.

Background

5α-reductase 1 (5αR1) and 5α-reductase 2 (5αR2) convert testosterone into the more potent androgen dihydrotestosterone. 5αR2 is the main isoenzyme in normal prostate tissue; however, most prostate tumors have increased 5αR1 and decreased 5αR2 expression. Previously, finasteride (5αR2 inhibitor) treatment begun 3 weeks post-tumor implantation had no effect on Dunning R3327-H rat prostate tumor growth. We believe the tumor compensated for finasteride treatment by increasing tumor 5αR1 expression or activity. We hypothesize that finasteride treatment would not significantly alter tumor growth even if begun before tumor implantation, whereas dutasteride (5αR1 and 5αR2 inhibitor) treatment would decrease tumor growth regardless of whether treatment was initiated before or after tumor implantation.

Methodology/Principal Findings

Sixty 8-week-old male nude mice were randomized to Control, Pre- and Post-Finasteride, and Pre- and Post-Dutasteride (83.3 mg drug/kg diet) diet groups. Pre- and post-groups began their treatment diets 1–2 weeks prior to or 3 weeks after subcutaneous injection of 1×105 WPE1-NA22 human prostate cancer cells, respectively. Tumors were allowed to grow for 22 weeks; tumor areas, body weights, and food intakes were measured weekly. At study''s conclusion, prostate and seminal vesicle weights were significantly decreased in all treatment groups versus the control; dutasteride intake significantly decreased seminal vesicle weights compared to finasteride intake. No differences were measured in final tumor areas or tumor weights between groups, likely due to poor tumor growth. In follow-up studies, proliferation of WPE1-NA22 prostate cancer cells and parent line RWPE-1 prostate epithelial cells were unaltered by treatment with testosterone, dihydrotestosterone, or mibolerone, suggesting that these cell lines are not androgen-sensitive.

Conclusion

The lack of response of WPE1-NA22 prostate cancer cells to androgen treatment may explain the inadequate tumor growth observed. Additional studies are needed to determine whether finasteride and dutasteride are effective in decreasing prostate cancer development/growth.  相似文献   

10.
11.
Wang W  Lv L  Pan K  Zhang Y  Zhao JJ  Chen JG  Chen YB  Li YQ  Wang QJ  He J  Chen SP  Zhou ZW  Xia JC 《PloS one》2011,6(9):e24897

Background

This study aims to investigate the expression and prognostic significance of activator protein 2α (AP-2α) in gastric adenocarcinoma.

Methodology/Principal Findings

AP-2α expression was analyzed using real-time quantitative PCR (RT-qPCR), western blotting, and immunohistochemical staining methods on tissue samples from a consecutive series of 481 gastric adenocarcinoma patients who underwent resections between 2003 and 2006. The relationship between AP-2α expression, clinicopathological factors, and patient survival was investigated. RT- qPCR results showed that the expression of AP-2α mRNA was reduced in tumor tissue samples, compared with expression in matched adjacent non-tumor tissue samples (P = 0.009); this finding was confirmed by western blotting analysis (P = 0.012). Immunohistochemical staining data indicated that AP-2α expression was significantly decreased in 196 of 481 (40.7%) gastric adenocarcinoma cases; reduced AP-2α expression was also observed in patients with poorly differentiated tumors (P = 0.001) and total gastric carcinomas (P = 0.002), as well as in patients who underwent palliative tumor resection (P = 0.004). Additionally, reduced expression of AP-2α was more commonly observed in tumors that were staged as T4a/b (P = 0.018), N3 (P = 0.006), and M1 (P = 0.008). Kaplan-Meier survival curves revealed that reduced expression of AP-2α was associated with poor prognosis in gastric adenocarcinoma patients (P<0.001). Multivariate Cox analysis identified AP-2α expression as an independent prognostic factor for overall survival (HR = 1.512, 95% CI = 1.127–2.029, P = 0.006).

Conclusions/Significance

Our data suggest that AP-2α plays an important role in tumor progression and that reduced AP-2α expression independently predicts an unfavorable prognosis in gastric adenocarcinoma patients.  相似文献   

12.

Background

Oral squamous cell carcinoma is an important cause of death and morbidity wordwide and effective prognostic markers are still to be discovered. HIF1α protein is associated with hypoxia response and neovascularization, essential conditions for solid tumors survival. The relationship between HIF1α expression, tumor progression and treatment response in head and neck cancer is still poorly understood.

Patients and Methods

In this study, we investigated HIF1α expression by immunohistochemistry in tissue microarrays and its relationship with clinical findings, histopathological results and survival of 66 patients with squamous cell carcinoma of the lower mouth.

Results

Our results demonstrated that high HIF1α expression is associated with local disease-free survival, independently from the choice of treatment. Furthermore, high expression of HIF1α in patients treated with postoperative radiotherapy was associated with survival, therefore being a novel prognostic marker in squamous cell carcinoma of the mouth. Additionally, our results showed that MVD was associated with HIF1α expression and local disease relapse.

Conclusion

These findings suggest that HIF1α expression can be used as a prognostic marker and predictor of postoperative radiotherapy response, helping the oncologist choose the best treatment for each patient.  相似文献   

13.

Purpose

To define the biology driving the aggressive nature of breast cancer arising in young women.

Experimental Design

Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years; n = 211≥65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts.

Results

In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and β-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and β-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value.

Conclusion

Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.  相似文献   

14.
15.

Background and Aims

Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (cœliac) disease (CD). The B-genome-encoded α-gliadin genes, however, contain very few epitopes. Controlling α-gliadin gene expression in wheat requires knowledge on the processes of expression and deposition of α-gliadin protein during wheat grain development.

Methods

A 592-bp fragment of the promotor of a B-genome-encoded α-gliadin gene driving the expression of a GUS reporter gene was transformed into wheat. A large number of transgenic lines were used for data collection. GUS staining was used to determine GUS expression during wheat kernel development, and immunogold labelling and tissue printing followed by staining with an α-gliadin-specific antibody was used to detect α-gliadin protein deposited in developing wheat kernels. The promoter sequence was screened for regulatory motifs and compared to other available α-gliadin promoter sequences.

Key Results

GUS expression was detected primarily in the cells of the starchy endosperm, notably in the subaleurone layer but also in the aleurone layer. The α-gliadin promoter was active from 11 days after anthesis (DAA) until maturity, with an expression similar to that of a 326-bp low molecular weight (LMW) subunit gene promoter reported previously. An α-gliadin-specific antibody detected α-gliadin protein in protein bodies in the starchy endosperm and in the subaleurone layer but, in contrast to the promoter activity, no α-gliadin was detected in the aleurone cell layer. Sequence comparison showed differences in regulatory elements between the promoters of α-gliadin genes originating from different genomes (A and B) of bread wheat both in the region used here and upstream.

Conclusions

The results suggest that additional regulator elements upstream of the promoter region used may specifically repress expression in the aleurone cell layer. Observed differences in expression regulator motifs between the α-gliadin genes on the different genomes (A and B) of bread wheat leads to a better understanding how α-gliadin expression can be controlled.Key words: Alpha-gliadin, promoter, expression, deposition, wheat, Triticum aestivum, grain development  相似文献   

16.
17.
L Wang  B Zuo  D Xu  Z Ren  H Zhang  X Li  M Lei  Y Xiong 《PloS one》2012,7(7):e40250

Background

Glycogen synthase kinase 3 (GSK3α and GSK3β) are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer’s disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.

Methodology

Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.

Conclusions

We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.  相似文献   

18.
Too WC  Wong MT  Few LL  Konrad M 《PloS one》2010,5(9):e12999

Background

Choline kinase is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase exists as three isoforms (CKα1, α2, and β). Specific inhibition of CKα has been reported to selectively kill tumoral cells. Monoclonal and polyclonal antibodies against CKα used in previous studies to detect the level of this isozyme in different cellular or biochemical contexts were able to detect either the α1 or the α2 isoform.

Methodology/Principal Findings

In this study, an antiserum against CKα was produced by immunizing rabbits with denatured, purified recombinant CKα2 full-length protein. This antiserum was highly specific for CKα when tested with extracts from different cell lines, and there was no cross reactivity with purified CKβ and other related proteins like human ethanolamine kinases (EK) and yeast choline or ethanolamine kinases. The antiserum simultaneously detected both CKα1 and α2 isoforms in MCF-7 and HepG2 cell extracts, but not in HeLa, HCT-116, and mouse embryonic stem cell extracts. Subsequent protein dot blot assay of total CKα in a human normal/tumor protein array of 30 tissue samples by using the antiserum showed that CKα was not overexpressed in all tumor tissues when compared to their normal counterparts. Most striking differences between tumor and normal CKα expression levels were observed in kidney (11-fold higher in tumor) and liver (15-fold lower in tumor) samples.

Conclusion/Significance

Apart from its high sensitivity and specificity, the antiserum produced in this work, which does not require further purification, has the advantage of co-detecting both α1 and α2 isoforms in cell extracts for direct comparison of their expression levels.  相似文献   

19.
Wang Q  Shen B  Zheng P  Feng H  Chen L  Zhang J  Zhang C  Zhang G  Teng J  Chen J 《PloS one》2010,5(10):e13252

Background

Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.

Methodology/Principal Findings

Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α,β,β′, δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β′- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion.

Conclusions/Significance

The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor.  相似文献   

20.

Introduction

The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

Methods

Human breast tissue specimens (malignant n = 75, normal n = 15, fibroadenoma n = 10) were analysed by RQ-PCR targeting NIS, receptors for retinoic acid (RARα, RARβ), oestrogen (ERα), thyroid hormones (THRα, THRβ), and also phosphoinositide-3-kinase (PI3K). Breast cancer cells were treated with Retinoic acid (ATRA), Estradiol and Thyroxine individually and in combination followed by analysis of changes in NIS expression.

Results

The lowest levels of NIS were detected in normal tissue (Mean(SEM) 0.70(0.12) Log10 Relative Quantity (RQ)) with significantly higher levels observed in fibroadenoma (1.69(0.21) Log10RQ, p<0.005) and malignant breast tissue (1.18(0.07) Log10RQ, p<0.05). Significant positive correlations were observed between human NIS and ERα (r = 0.22, p<0.05) and RARα (r = 0.29, p<0.005), with the strongest relationship observed between NIS and RARβ (r = 0.38, p<0.0001). An inverse relationship between NIS and PI3K expression was also observed (r = −0.21, p<0.05). In vitro, ATRA, Estradiol and Thyroxine individually stimulated significant increases in NIS expression (range 6–16 fold), while ATRA and Thyroxine combined caused the greatest increase (range 16–26 fold).

Conclusion

Although NIS expression is significantly higher in malignant compared to normal breast tissue, the highest level was detected in fibroadenoma. The data presented supports a role for retinoic acid and estradiol in mammary NIS regulation in vivo, and also highlights potential thyroidal regulation of mammary NIS mediated by thyroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号