首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The enigma of Sizzled, a secreted Frizzled-related protein, has been resolved in a recent study from the De Robertis lab ( [in the January 13 issue of Cell]). Sizzled, although homologous to other Wnt antagonists, does not function as such, nor does it function within a Wnt signaling pathway. Remarkably it functions as an antagonist of BMP signaling, competing with Chordin for binding to its inhibitor a Tolloid-related metalloprotease. This competition protects Chordin from cleavage, thus allowing it to bind and limit BMP signaling.  相似文献   

3.

Introduction

Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro.

Methods

Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test.

Results

We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation.

Conclusion

We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.  相似文献   

4.
The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.  相似文献   

5.
We identified a gene encoding a novel secreted protein in mice, humans, and zebrafish. As the protein of 222 amino acids is similar to Brorin, a secreted BMP antagonist, which is a member of the Chordin family, we named it Brorin-like. Recombinant Brorin-like protein weakly but significantly inhibited the activity of BMP in mouse preosteoblastic cells and promoted neurogenesis in mouse neural precursor cells. Brorin-like was predominantly expressed in the adult brain and embryonic neural tissues. The inhibition of Brorin-like functions in zebrafish resulted in the impairment of neural development. Brorin-like potentially plays roles in neural development and functions.  相似文献   

6.
7.
In Xenopus, the dorso-ventral (D/V) axis is thought to be specified by the bone morphogenetic proteins (Bmp) activity arising through interaction with antagonists such as Noggin, Chordin and Follistatin. We report here, through inactivation of noggin1 (nog1) that this gene is not essential by itself to establish the D/V patterning. However, at blastula stage, inactivation of nog1 strongly amplifies chordin (chd) phenotype, revealing redundant functions of these two genes on D/V axis formation. Substantial dorsal tissues remaining in the double nog1-chd morphant suggested that other anti-Bmp factors may pattern the D/V axis. We isolated two potential candidates, the follistatin-like (fstl) genes. We found that fstl2 is an early gastrula expressed gene. Its inactivation, similar to nog1, strongly enhances the chd phenotype. Moreover, the penetrance of the ventralization phenotype is much higher when we inactivated simultaneously chd, nog1 and fstl2. Altogether, our data reveal that, while Chordin is the main player of the D/V axis, sufficient to maintain proper activity of Bmp gradient, the structures remaining in the chd mutant (namely dorsal and dorso-lateral territories, in both mesodermal and ectodermal layers) result from the anti-Bmp activity carried by Nog1 and Fstl2 at blastula and gastrula stages.  相似文献   

8.
In this paper, we investigate the function of Smicl, a zinc-finger Smad-interacting protein that is expressed maternally in the Xenopus embryo. Inhibition of Smicl function by means of antisense morpholino oligonucleotides causes the specific downregulation of Chordin, a dorsally expressed gene encoding a secreted BMP inhibitor that is involved in mesodermal patterning and neural induction. Chordin is activated by Nodal-related signalling in an indirect manner, and we show here that Smicl is involved in a two-step process that is necessary for this activation. In the first, Smad3 (but not Smad2) activates expression of Xlim1 in a direct fashion. In the second, a complex containing Smicl and the newly induced Xlim1 induces expression of Chordin. As well as revealing the function of Smicl in the early embryo, our work yields important new insight in the regulation of Chordin and identifies functional differences between the activities of Smad2 and Smad3 in the Xenopus embryo.  相似文献   

9.
In this study we investigate the roles of the organizer factors chordin and noggin, which are dedicated antagonists of the bone morphogenetic proteins (BMPs), in formation of the mammalian head. The mouse chordin and noggin genes (Chrd and Nog) are expressed in the organizer (the node) and its mesendodermal derivatives, including the prechordal plate, an organizing center for rostral development. They are also expressed at lower levels in and around the anterior neural ridge, another rostral organizing center. To elucidate roles of Chrd and Nog that are masked by the severe phenotype and early lethality of the double null, we have characterized embryos of the genotype Chrd(-/-);Nog(+/-). These animals display partially penetrant neonatal lethality, with defects restricted to the head. The variable phenotypes include cyclopia, holoprosencephaly, and rostral truncations of the brain and craniofacial skeleton. In situ hybridization reveals a loss of SHH expression and signaling by the prechordal plate, and a decrease in FGF8 expression and signaling by the anterior neural ridge at the five-somite stage. Defective Chrd(-/-);Nog(+/-) embryos exhibit reduced cell proliferation in the rostral neuroepithelium at 10 somites, followed by increased cell death 1 day later. Because these phenotypes result from reduced levels of BMP antagonists, we hypothesized that they are due to increased BMP activity. Ectopic application of BMP2 to wild-type cephalic explants results in decreased FGF8 and SHH expression in rostral tissue, suggesting that the decreased expression of FGF8 and SHH observed in vivo is due to ectopic BMP activity. Cephalic explants isolated from Chrd;Nog double mutant embryos show an increased sensitivity to ectopic BMP protein, further supporting the hypothesis that these mutants are deficient in BMP antagonism. These results indicate that the BMP antagonists chordin and noggin promote the inductive and trophic activities of rostral organizing centers in early development of the mammalian head.  相似文献   

10.
Dorsoventral patterning in animal development is regulated by a morphogenetic gradient of Bone morphogenetic protein signalling, which is established by a set of proteins that are conserved from Drosophila to vertebrates. These include Chordin (Chd)/Short gastrulation, Xolloid/Tolloid and Twisted gastrulation. Here, we report the identification of a cell-surface component of this morphogenetic pathway. Prompted by the observation that Chd protein bound to the surface of certain cell lines with subnanomolar affinity, we identified two cell-surface proteins that bind to Chd, one of which corresponds to Integrin-α3. Integrin-α3 and Chd are co-expressed in the Xenopus embryo. Transfection of Integrin-α3 increased the binding of Chd to the cell surface, which was competed by an excess of soluble Integrin-α3. After binding to the cell surface, Chd was translocated into intracellular endocytic compartments in a temperature-dependent manner. We propose that Integrin-α3 may regulate the concentration of Chd protein in the extracellular space by endocytosis.  相似文献   

11.
We analyzed the Chordin requirement in Xenopus development. Targeting of both chordin Xenopus laevis pseudoalleles with morpholino antisense oligomers (Chd-MO) markedly decreased Chordin production. Embryos developed with moderately reduced dorsoanterior structures and expanded ventroposterior tissues, phenocopying the zebrafish chordino mutant. A strong requirement for Chordin in dorsal development was revealed by experimental manipulations. First, dorsalization by lithium chloride treatment was completely blocked by Chd-MO. Second, Chd-MO inhibited elongation and muscle differentiation in Activin-treated animal caps. Third, Chd-MO completely blocked the induction of the central nervous system (CNS), somites, and notochord by organizer tissue transplanted to the ventral side of host embryos. Unexpectedly, transplantations into the dorsal side revealed a cell-autonomous requirement of Chordin for neural plate differentiation.  相似文献   

12.
13.
The oral-aboral (OA) axis in the sea urchin is specified by the TGFβ family members Nodal and BMP2/4. Nodal promotes oral specification, whereas BMP2/4, despite being expressed in the oral territory, is required for aboral specification. This study explores the role of Chordin (Chd) during sea urchin embryogenesis. Chd is a secreted BMP inhibitor that plays an important role in axial and neural specification and patterning in Drosophila and vertebrate embryos. In Lytechinus variegatus embryos, Chd and BMP2/4 are functionally antagonistic. Both are expressed in overlapping domains in the oral territory prior to and during gastrulation. Perturbation shows that, surprisingly, Chd is not involved in OA axis specification. Instead, Chd is required both for normal patterning of the ciliary band at the OA boundary and for development of synaptotagmin B-positive (synB) neurons in a manner that is reciprocal with BMP2/4. Chd expression and synB-positive neural development are both downstream from p38 MAPK and Nodal, but not Goosecoid. These data are summarized in a model for synB neural development.  相似文献   

14.
15.
Bone morphogenetic proteins (BMPs), as well as the BMP-binding molecules Chordin (Chd), Crossveinless-2 (CV2) and Twisted Gastrulation (Tsg), are essential for axial skeletal development in the mouse embryo. We previously reported a strong genetic interaction between CV2 and Tsg and proposed a role for this interaction in the shaping of the BMP morphogenetic field during vertebral development. In the present study we investigated the roles of CV2 and Chd in the formation of the vertebral morphogenetic field. We performed immunostainings for CV2 and Chd protein on wild-type, CV2/ or Chd/ mouse embryo sections at the stage of onset of the vertebral phenotypes. By comparing mRNA and protein localizations we found that CV2 does not diffuse away from its place of synthesis, the vertebral body. The most interesting finding of this study was that Chd synthesized in the intervertebral disc accumulates in the vertebral body. This relocalization does not take place in CV2/ mutants. Instead, Chd was found to accumulate at its site of synthesis in CV2/ embryos. These results indicate a CV2-dependent flow of Chd protein from the intervertebral disc to the vertebral body. Smad1/5/8 phosphorylation was decreased in CV2/vertebral bodies. This impaired BMP signaling may result from the decreased levels of Chd/BMP complexes diffusing from the intervertebral region. The data indicate a role for CV2 and Chd in the establishment of the vertebral morphogenetic field through the long-range relocalization of Chd/BMP complexes. The results may have general implications for the formation of embryonic organ-forming morphogenetic fields.  相似文献   

16.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin protein with high affinity (K(D) in the 1 nM range); (5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; (6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.  相似文献   

17.
Crossveinless 2 (CV-2) is an extracellular BMP modulator protein belonging to the Chordin family. During development it is expressed at sites of high BMP signaling and like Chordin CV-2 can either enhance or inhibit BMP activity. CV-2 binds to BMP-2 via its N-terminal Von Willebrand factor type C (VWC) domain 1. Here we report the structure of the complex between CV-2 VWC1 and BMP-2. The tripartite VWC1 binds BMP-2 only through a short N-terminal segment, called clip, and subdomain (SD) 1. Mutational analysis establishes that the clip segment and SD1 together create high-affinity BMP-2 binding. All four receptor-binding sites of BMP-2 are blocked in the complex, demonstrating that VWC1 acts as competitive inhibitor for all receptor types. In vivo experiments reveal that the BMP-enhancing (pro-BMP) activity of CV-2 is independent of BMP-2 binding by VWC1, showing that pro- and anti-BMP activities are structurally separated in CV-2.  相似文献   

18.
Dorsoventral patterning is regulated by a system of interacting secreted proteins involving BMP, Chordin, Xolloid and Twisted gastrulation (Tsg). We have analyzed the molecular mechanism by which Tsg regulates BMP signaling. Overexpression of Tsg mRNA in Xenopus embryos has ventralizing effects similar to Xolloid, a metalloprotease that cleaves Chordin. In embryos dorsalized by LiCl treatment, microinjection of Xolloid or Tsg mRNA restores the formation of trunk-tail structures, indicating an increase in BMP signaling. Microinjection of Tsg mRNA leads to the degradation of endogenous Chordin fragments generated by Xolloid. The ventralizing activities of Tsg require an endogenous Xolloid-like activity, as they can be blocked by a dominant-negative Xolloid mutant. A BMP-receptor binding assay revealed that Tsg has two distinct and sequential activities on BMP signaling. First, Tsg makes Chordin a better BMP antagonist by forming a ternary complex that prevents binding of BMP to its cognate receptor. Second, after cleavage of Chordin by Xolloid, Tsg competes the residual anti-BMP activity of Chordin fragments and facilitates their degradation. This molecular pathway, in which Xolloid switches the activity of Tsg from a BMP antagonist to a pro-BMP signal once all endogenous full-length Chordin is degraded, may help explain how sharp borders between embryonic territories are generated.  相似文献   

19.
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula beta-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer.  相似文献   

20.
In the developing vertebrate embryo, proper dorsal-ventral patterning relies on BMP antagonists secreted by the organizer during gastrulation. The BMP antagonist chordin has a complex interaction with BMPs that is governed in part by its interaction with the secreted protein twisted gastrulation (tsg). In different contexts, tsg has activity as either a BMP agonist or as a BMP antagonist. Using morpholino oligonucleotides in Xenopus tropicalis, we show that reducing tsg gene product results in a ventralized embryo, and that tsg morphants specifically lack a forebrain. We provide new evidence that tsg acts as a BMP antagonist during X. tropicalis gastrulation since the tsg depletion phenotype can be rescued in two ways: by chordin overexpression and by BMP depletion. We conclude that tsg acts as a BMP antagonist in the context of the frog gastrula, and that it acts cooperatively with chordin to establish dorsal structures and particularly forebrain tissue during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号