首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of some [Leu5]enkephalin derivatives is described in which D-glucose has been linked to the opioid pentapeptide through the ester bond involving the carboxyl function at the C-terminal with C-1 or C-6 of the D-glucopyranose moiety. Enkephalin derivatives were assayed for opioid activity and found to be full agonists in bioassays based on inhibition of electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD). The obtained results suggest that the opioid activity of the tested glucoconjugates depend upon the ester bond position in the molecule. Whereas 1-O conjugate 5 was somewhat more potent than [Leu5]enkephalin in the GPI assay, the 6-O conjugates, with the exception of 1-O-benzyl derivative 11, were considerably less potent. All enkephalin derivatives were delta-receptor selective; in particular, the acetylated analog 8 was three times more delta-receptor selective than [Leu5]enkephalin.  相似文献   

2.
Hirata H  Sonoda S  Agui S  Yoshida M  Ohinata K  Yoshikawa M 《Peptides》2007,28(10):1998-2003
Rubiscolin-6 (Tyr-Pro-Leu-Asp-Leu-Phe) is a delta opioid peptide derived from the large subunit of spinach d-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We previously reported that rubiscolin-6 had an analgesic effect and stimulated memory consolidation. Here we show that intraperitoneally (i.p.) or orally administered rubiscolin-6 has an anxiolytic effect at a dose of 10 mg/kg or 100 mg/kg, respectively, in the elevated plus-maze test in mice. The anxiolytic effects of rubscolin-6 after i.p. (10 mg/kg) and oral (100 mg/kg) administration were blocked by a delta opioid receptor antagonist, naltrindole (1 mg/kg, s.c.), suggesting that the anxiolytic activity of rubiscolin-6 is mediated by delta opioid receptor. The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was also blocked by a dopamine D(1) antagonist, SCH23390 (30 microg/kg, i.p.), but not by a dopamine D(2) antagonist, raclopride (15 microg/kg, i.p.). The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was blocked by sigma(1) receptor antagonist, BMY14802 (0.5 mg/kg, i.p.) or BD1047 (10 mg/kg, i.p.). Taken together, the anxiolytic effect of rubiscolin-6 is mediated by sigma(1) and dopamine D(1) receptors downstream of delta opioid receptor.  相似文献   

3.
Liu ZH  Jin WQ  Dai QY  Chen XJ  Zhang HP  Chi ZQ 《Life sciences》2003,73(2):233-241
Compound trans-4-(p-bromophenyl)-4-(dimethylamino)-1-(2-thiophen-2-yl-ethyl)-cyclohexanol (C8813), structurally unrelated to morphine, is a novel analgesic. The present study examined the antinociception, opioid receptor selectivity and in vitro activity of C8813. The antinociceptive activity was evaluated using mouse hot plate and acetic acid writhing tests. In mouse hot plate test, the antinociceptive ED(50) of C8813 was 11.5 microg/kg, being 591 times and 3.4 times more potent than morphine and fentanyl respectively. In mouse writhing test, the antinociceptive ED(50) of C8813 was 16.9 microg/kg, being 55 times and 2.3 times more active than morphine and fentanyl respectively. In the opioid receptor binding assay, C8813 showed high affinity for mu-opioid receptor (K(i) = 1.37 nM) and delta-opioid receptor (K(i) = 3.24 nM) but almost no affinity for kappa-opioid receptor (at 1 microM). In the bioassay, the inhibitory effect of C8813 in the guinea-pig ileum (GPI) was 16.5 times more potent than in the mouse vas deferens (MVD). The inhibitory effects of C8813 in the GPI and MVD could be antagonized by mu-opioid receptor antagonist naloxone and delta-opioid receptor antagonist ICI174,864 respectively. However, the inhibitory effect of C8813 in the rabbit vas deferens was very weak. These results indicated that C8813 was a potent analgesic and a high affinity agonist for the mu- and delta-opioid receptors.  相似文献   

4.
Yang S  Kawamura Y  Yoshikawa M 《Peptides》2003,24(2):325-328
Rubiscolin-6 (YPLDLF) is a delta selective opioid peptide isolated from the enzymatic digests of ribulose bisphosphate carboxylase/oxygenase (Rubisco) from spinach leaves. In a step-through type passive avoidance test in ddY mice, rubiscolin-6 enhanced memory consolidation at doses of 3nmol/mouse after intracerebroventricular administration, and at 100mg/kg after oral administration. These doses are smaller than the optimal doses for an analgesic effect. The memory enhancing effect of rubiscolin-6 was blocked by pretreatment with the delta antagonist naltrindole, suggesting the involvement of the delta opioid receptor.  相似文献   

5.
We found that the sequences YPLDL and YPLDLF in the large subunit of spinach D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) met the structure YP-aliphatic amino acid which might have opioid activity. We then synthesized these peptides to test their opioid activity. The IC(50) of these peptides in mouse vas deferens assay were 51.0 microM and 24.4 microM, respectively, and those in delta receptor binding assay using [(3)H]deltorphin II as radioligand were 2.09 microM and 0.93 microM, respectively. Both peptides were selective for delta receptor. We named them rubiscolin-5 and -6, respectively. Rubiscolin-5 and -6 have antinociceptive activity in mice after i.c.v. or oral administration. The enzymatic conditions to release rubiscolin were investigated using both spinach Rubisco and synthetic fragment peptides. This is the first example of bioactive peptides derived from plant Rubisco.  相似文献   

6.
Opioid activities of beta-casomorphins   总被引:1,自引:0,他引:1  
β-Casomorphin-7 (H-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-OH) and its analogues: β-casomorphin-6, (-5) and (-4) (derived by sequential removal of respectively one, two or three amino acid residues from the C-terminus), were tested for their opioid activities in a variety of assay systems. Each of the four peptides displayed opioid activity in an opiate receptor binding assay, the isolated mouse vas deferens (MVD), the guinea-pig ileum longitudinal muscle myenteric plexus preparation (GPI) and produced naloxone-reversible analgesia after intracerebroventricular injection into rats. In contrast, none of the peptides displayed opioid activity in the isolated rat vas deferens preparation (RVD). β-Casomorphin-5 was the most potent compound in all the assays employed. Each β-casomorphin was more potent on the GPI than on the MVD. In view of the fact that the GPI, MVD and RVD are populated predominantly by μ-, δ- and ε-receptors, respectively, the β-casomorphins probably represent μ-type opiate receptor agonists.  相似文献   

7.
New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   

8.
Hexapeptides such as Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) and Ac-Arg-Tyr-Tyr-Arg-Trp-Arg-NH(2) have been isolated from a combinatorial peptide library as small peptide ligands for the opioid peptide-like 1 (ORL1) receptor. To investigate the detailed structural requirements of hexapeptides, 25 analogs of these hexapeptides, based on the novel analog Ac-Arg-Tyr-Tyr-Arg-Ile-Arg-NH(2) (1), were synthesized and tested for their ORL1 receptor affinity and agonist/antagonist activity on mouse vas deferens (MVD) tissues. Analog 1 and its Cit(6)-analog (10) were found to possess high affinity to the ORL1 receptor, comparable to that of nociceptin/orphanin FQ, and exhibited potent antagonist activity (pA(2) values of 7.77 for 1 and 7.51 for 10, which are higher than that of [NPhe(1)]nociceptin(1-13)-NH(2) (6.90) on MVD assay. It was also found that the amino acid residue in position 5 plays a key role in agonist/antagonist activity, i.e. an L-configuration aliphatic amino acid is required for potent antagonist activity, while a nonchiral or D-configuration residue produces potent agonist activity. These lines of evidence may provide insight into the mechanisms controlling agonist/antagonist switching in the ORL1 receptor, and may also serve to help developing more potent ORL1 agonists and antagonists.  相似文献   

9.
Based on the amino acid sequence YPFV found in the soy beta-conglycinin beta-subunit, which is common to an opioid peptide human beta-casomorphin-4, peptides YPFVV, YPFVVN, and YPFVVNA were synthesized according to their primary structure. On guinea pig ileum (GPI) assay, they showed opioid activity (IC50 = 6.0, 9.2 and 13 microM respectively) more potent than human beta-casomorphins, and were named soymorphins-5, -6, and -7, respectively. Their opioid activities on mouse vas deferens (MVD) assay were less potent than on GPI assay, suggesting that they are selective for the mu opioid receptor. Human beta-casomorphin-4 and soymorphin-5 were released from the soy 7S fraction (beta-conglycinin) by the action of gastrointestinal proteases. Soymorphins-5, -6, and -7 had anxiolytic activities after oral administration at doses of 10-30 mg/kg in the elevated plus-maze test in mice.  相似文献   

10.
Opioid receptor selectivity of peptide models of beta-endorphin   总被引:1,自引:0,他引:1  
Two peptides, designed to contain structural models of the proposed hydrophilic linker domain (residues 6-12) and amphiphilic alpha-helical domain (residues 13-29) in beta-endorphin, have been tested for their abilities to mimic the opioid receptor selectivity profile of the natural hormone. In competitive binding assays employing guinea-pig brain membranes, both peptides displayed a much higher affinity for mu- and delta-opioid receptors than for kappa opioid receptors. Relative to beta-endorphin, the peptide models were 2-3 times more potent in the mu and kappa receptor binding assays, and about equipotent in the delta receptor binding assay. In guinea-pig ileum assays, one peptide was equipotent to beta-endorphin and the other was twice as potent. Like beta-endorphin, their actions on this tissue were highly sensitive to naloxone antagonism, indicating that they were mediated by mu receptors and not kappa receptors. In view of the design of the two peptide models, and their minimal homology to the natural hormone, these results provide additional evidence in support to our proposal for the functional conformation of beta-endorphin.  相似文献   

11.
We report here on the binding affinity and bioassay results of cyclic enkephalin analogs comprising a cyclic moiety and C-terminal fragment of MERGL, where ME denotes methionine enkephalin. MERGL (YGGFMRGL) has been suggested to be cleaved enzymatically by membrane-bound enkephalinase 24.11 to leave ME and the tripeptide RGL. In our study we have synthesized hybrids of DPDPE or DPLCE and the C-terminal tripeptide RGL in order to mimic a prohormone able to cross the blood-brain barrier. The study has shown that of the homologs presented here, analogs of DPLCE often are more potent at delta opioid receptors both in binding affinity and in bioactivity at the MVD, than DPDPE. Our hypothesis that hybrids (consisting of the drug and the spacer for the carrier) could be designed which would either have no opioid activity or, alternatively, be by themselves very active, has been verified.  相似文献   

12.
Three N-glycoconjugates of the general formula H-Tyr-Gly-Gly-Phe-Leu-NH-R (R = carbohydrate residue) were synthesized in order to determine the influence of some carbohydrate molecules (6-amino-6-deoxy-D-glucopyranose, 2-amino-2-deoxy-D-glucopyranose, beta-D-glucopyranosylamine) on the biological activity, conformation, and stability of the opioid pentapeptide [Leu5]enkephalin. For the preparation of this compound different methods of peptide synthesis (active ester and mixed anhydride) were investigated. In comparison with [Leu5]enkephalin, all three N-glycoconjugates showed higher potency in the guinea pig ileum assay and lower potency in the mouse vas deferens assay, indicating a decrease in delta opioid receptor selectivity.  相似文献   

13.
A series of 3-substituted analogs (3) of the parent kappa agonist, 1, were prepared to limit access to the central nervous system. With the exception of compound 3j, all other compounds bound to the human kappa opioid receptor with high affinity (K(i)=0.31-9.5 nM) and were selective for kappa over mu and delta opioid receptors. Compounds 3c, d, and 3g-i produced potent antinociceptive activity in the rat formalin assay (i.paw) and the mouse acetic acid-induced writhing assay (s.c.), with weak activity in the mouse platform sedation test. The peripheral restriction indices of 3c, d, 3g, and 3i were improved 2- to 7-fold compared to the parent compound 1, and these compounds were approximately 2- to 5-fold more potent than the peripheral kappa agonist ICI 204448.  相似文献   

14.
Based on the amino acid sequence YPFV found in the soy β-conglycinin β-subunit, which is common to an opioid peptide human β-casomorphin-4, peptides YPFVV, YPFVVN, and YPFVVNA were synthesized according to their primary structure. On guinea pig ileum (GPI) assay, they showed opioid activity (IC50 = 6.0, 9.2 and 13 μM respectively) more potent than human β-casomorphins, and were named soymorphins-5, -6, and -7, respectively. Their opioid activities on mouse vas deferens (MVD) assay were less potent than on GPI assay, suggesting that they are selective for the μ opioid receptor. Human β-casomorphin-4 and soymorphin-5 were released from the soy 7S fraction (β-conglycinin) by the action of gastrointestinal proteases. Soymorphins-5, -6, and -7 had anxiolytic activities after oral administration at doses of 10–30 mg/kg in the elevated plus-maze test in mice.  相似文献   

15.
The previously described cyclic, delta opioid receptor-selective tetrapeptide H-Tyr-D-Cys-Phe-D-Pen-OH, where Pen, penicillamine, is beta-beta-dimethylcysteine, was modified at residues 2 and 4 by varying combinations of D- and L-Cys and D- and L-Pen, and effects on mu and delta opioid receptor binding affinities and on potency in the mouse vas deferens (MVD) smooth muscle assay were evaluated. A comparison was drawn between consequences of alterations in this series of analogs and those of analogous modifications in the related cyclic pentapeptide series which includes the highly delta receptor-selective [D-Pen2,D-Pen5]enkephalin, DPDPE. Unlike effects observed in the cyclic pentapeptide series, the mu receptor binding affinities of the cyclic tetrapeptides are not dramatically influenced by substitution of Pen for Cys at residue 2. Conversely, while binding of the pentapeptides is only slightly affected by alteration of the chirality of the carboxy-terminal residue, modification of stereochemistry at the carboxy terminus in the tetrapeptides critically alters binding behavior at both mu and delta sites. In contrast with the pentapeptide series, the tetrapeptides appear to be highly dependent upon primary sequence for binding and activity, as only the lead compound binds with high affinity to the delta site. Results suggest that the less flexible cyclic tetrapeptides, lacking the Gly3 residue, display more stringent structural requirements for binding and activity than do the corresponding cyclic pentapeptides.  相似文献   

16.
We have identified compound 1 as a novel ligand for opioid and melanocortin (MC) receptors, which is derived from the overlapping of a well known structure for the delta opioid receptor, 2,6-dimethyltyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), and a small molecule for the MC receptor, Tic-DPhe(p-Cl)-piperidin-4-yl-N-phenyl-propionamide. Ligand 1 showed that there is an overlapping pharmacophore between opioid and MC receptors through the Tic residue. The ligand displayed high biological activities at the delta opioid receptor (Ki = 0.38 nM in binding assay, EC(50) = 0.48 nM in GTP-gamma-S binding assay, IC(50) = 74 nM in MVD) as an agonist instead of an antagonist and showed selective binding affinity (IC(50) = 2.3 muM) at the MC-3 receptor rather than at the MC-5 receptor. A study of the structure-activity relationships demonstrated that the residues in positions 2, 3, and the C-terminus act as a pharmacophore for the MC receptors, and the residues in positions 1 and 2 act as a pharmacophore for the opioid receptors. Thus, this structural construct can be used to prepare chimeric structures with adjacent or overlapping pharmacophores for opioid and MC receptors.  相似文献   

17.
AR-M100613 ([I]-Dmt-c[-D-Orn-2-Nal-D-Pro-D-Ala-]) is the iodinated analog of a cyclic casomorphin previously shown to be a potent antagonist at the delta opioid receptor. Specific [125I]AR-M100613 binding to rat whole brain membranes was saturable, reversible, and best fit to a one-site model (Kd = 0.080 +/- 0.008 nM, Bmax = 45.2 +/- 4.4 fmol/mg protein). [125I]AR-M100613 binding was displaced with high affinity by the delta opioid receptor ligands SNC-80, Deltorphin II and DPDPE but not the mu or kappa-selective receptor ligands DAMGO and U69593. Residual non-selective binding of [125I]AR-M 100613 to mu opioid receptors is blocked by the addition of CTOP to the assay buffer. [35S]GTPgammaS binding assays indicate that AR-M100613 is a potent, selective, and reversible antagonist for delta opioid receptors in rat brain membranes. The high-affinity, high specific activity, low nonspecific binding and antagonist profile of [125I]AR-M100613 favor its use as a radiochemical probe for delta opioid receptors.  相似文献   

18.
14-beta-Methyl-8-oxacyclorphan (BC-3016) was tested for its ability to depress the electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD) and to compete with the binding of prototype ligands selective for kappa-, mu-, or delta-opioid receptors in membrane preparations of rat brain and guinea pig cerebellum. BC-3016 was a very potent agonist in the GPI and MVD preparations, with ID50 of 0.7 and 31 nM, respectively. The activity of levorphanol, a standard alkaloid related to BC-3016, was much lower in both assays with ID50 values of 44 and 86 nM, respectively. Conversely, the activity of BC-3016 was quite comparable to that of dynorphin-A(1-13) in both preparations. In the GPI assay, a putative kappa-receptor antagonist, MR-2266, was 6.6 and 5.5 times more potent than naloxone in blocking the activity of BC-3016 and dynorphin-A(1-13), respectively. BC-3016 was also very potent in displacing bound [3H]ethylketocyclazocine ([3H]EKC) to membrane preparations of the guinea pig cerebellum, a brain component containing predominantly kappa-opioid receptors (Ki of 0.58 nM). Its potency in the displacement of the bound mu-ligand, 3H-labelled (D-Ala2,MePhe4,Gly-OH5)-enkephalin ([3H]DAGO), to rat brain homogenates was somewhat lower (Ki of 0.8 nM) but still high when compared with its ability to displace the delta-ligand, 3H-labelled (D-Ser2, Thr6)-Leu-enkephalin ([3H]DSLET) to rat brain homogenates (Ki of 4.45 nM). The affinity of BC-3016 for the opioid receptor was 2.1-fold higher than that of U-50488H, a selective kappa-opioid ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The previously described cyclic mu opioid receptor-selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et) (JOM-6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]-GTPgammaS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]-GTPgammaS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range 0.4-9nM. However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100nM. Lastly, we have identified a peptide, D-Hat-c[D-Cys-Phe-D-Pen]NH2 (Et), with high potency and > 1,000-fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]-GTPgammaS assay.  相似文献   

20.
Tetrapeptides of primary sequence Tyr-X-Phe-YNH2, where X is D-Cys or D-Pen (penicillamine) and where Y is D-Pen or L-Pen, were prepared and were cyclized via the side chain sulfurs of residues 2 and 4 to disulfide or dithioether-containing analogs. These peptides are related to previously reported penicillamine-containing pentapeptide enkephalin analogs but lack the central glycine residue of the latter and were designed to assess the effect of decreased ring size on opioid activity. Binding affinities of the tetrapeptides were determined to both mu and delta opioid receptors. Binding affinity and selectivity in the tetrapeptide series were observed to be highly dependent on primary sequence. For example, L-Pen4 analogs displayed low affinity and were nonselective, while the corresponding D-Pen4 diastereomers were of variable affinity and higher selectivity. Among the latter compounds were examples of potent analogs in which selectivity shifted from delta selective to mu selective as the ring size was increased. The relatively high binding affinity and delta receptor selectivity observed with one of the carboxamide terminal disulfide analogs led to the synthesis of the corresponding carboxylic acid terminal, Tyr-D-Cys-Phe-D-PenOH. This analog displayed delta receptor binding selectivity similar to that of the standard delta ligand, [D-Pen2,D-Pen5]enkephalin (DPDPE), and was found to have a 3.5-fold higher binding affinity than DPDPE. All the tetrapeptides were further evaluated in the isolated mouse vas deferens (mvd) assay and all displayed opioid agonist activity. In general, tetrapeptide potencies in the mouse vas deferens correlated well with binding affinities but were somewhat lower. Receptor selectivity in the mvd, assessed by examining the effect of opioid antagonists on the tetrapeptide concentration-effect curves, was similar to that determined in the binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号