首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of a novel carotenoid cleavage dioxygenase from plants   总被引:27,自引:0,他引:27  
The plant hormone abscisic acid is derived from the oxidative cleavage of a carotenoid precursor. Enzymes that catalyze this carotenoid cleavage reaction, nine-cis epoxy-carotenoid dioxygenases, have been identified in several plant species. Similar proteins, whose functions are not yet known, are present in diverse organisms. A putative cleavage enzyme from Arabidopsis thaliana contains several highly conserved motifs found in other carotenoid cleavage enzymes. However, the overall homology with known abscisic acid biosynthetic enzymes is low. To determine the biochemical function of this protein, it was expressed in Escherichia coli and used for in vitro assays. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions. In most instances, the enzyme cleaves the substrate symmetrically to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrate. Based upon sequence similarity, orthologs of this gene are present throughout the plant kingdom. A similar protein in beans catalyzes the same reaction in vitro. The characterization of these activities offers the potential to synthesize a variety of interesting, natural products and is the first step in determining the function of this gene family in plants.  相似文献   

2.
The Arabidopsis BYPASS1 (BPS1) gene is required for normal root and shoot development. In bps1 mutants, grafting and root excision experiments have shown that mutant roots produce a transmissible signal that is capable of arresting shoot development. In addition, we previously showed that growth of bps1 mutants on the carotenoid biosynthesis inhibitor fluridone resulted in partial rescue of both leaf and root defects. These observations suggest that a single mobile carotenoid-derived signal affects both root and shoot development. Here, we describe further characterization of the bps1 root-derived signal using genetic and biosynthetic inhibitor approaches. We characterized leaf and root development in double mutants that combined the bps1 mutant with mutants that have known defects in genes encoding carotenoid processing enzymes or defects in responses to carotenoid-derived abscisic acid. Our studies indicate that the mobile signal is neither abscisic acid nor the MAX-dependent hormone that regulates shoot branching, and that production of the signal does not require the activity of any single carotenoid cleavage dioxygenase. In addition, our studies with CPTA, a lycopene cyclase inhibitor, show that signal production requires synthesis of beta-carotene and its derivatives. Furthermore, we show a direct requirement for carotenoids as signal precursors, as the GUN plastid-to-nucleus signaling pathway is not required for phenotypic rescue. Together, our results suggest that bps1 roots produce a novel mobile carotenoid-derived signaling compound.  相似文献   

3.
Arabidopsis thaliana has nine genes that constitute a family of putative carotenoid cleavage dioxygenases (CCDs). While five members of the family are believed to be involved in synthesis of the phytohormone abscisic acid, the functions of the other four enzymes are less clear. Recently two of the enzymes, CCD7/MAX3 and CCD8/MAX4, have been implicated in synthesis of a novel apocarotenoid hormone that controls lateral shoot growth. Here, we report on the molecular and genetic interactions between CCD1, CCD7/MAX3 and CCD8/MAX4. CCD1 distinguishes itself from other reported CCDs as being the only member not targeted to the plastid. Unlike ccd7/max3 and ccd8/max4, both characterized as having highly branched phenotypes, ccd1 loss-of-function mutants are indistinguishable from wild-type plants. Thus, even though CCD1 has similar enzymatic activity to CCD7/MAX3, it does not have a role in synthesis of the lateral shoot growth inhibitor. Rather, it may have a role in synthesis of apocarotenoid flavor and aroma volatiles, especially in maturing seeds where loss of function leads to significantly higher carotenoid levels.  相似文献   

4.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

5.
The influence of the solubility-enhancing fusion proteins glutathione-S-transferase (GST) and NusA on the heterologous expression and in vitro biocatalytic performance of the carotenoid cleavage dioxygenase AtCCD1 from Arabidopsis thaliana was investigated. A micellar dispersion of the water-insoluble model substrate β-apo-8′-carotenal in combination with Triton X-100 was used for the spectrophotometric in vitro assays. Specific activity in the cellular extract was twofold increased by the use of GST as a carrier protein, whereas it was decreased by 70% when fused with NusA. Reduced molar activity of the purified fusion proteins was observed, which could not be regained by proteolytic removal of the carrier protein. The addition of organic solvents in the form of short-chain aliphatic alcohols positively influenced the enzyme activity. Optimization of the reaction medium led to an 18-fold activation, and a clear correlation could be found between the organic solvent concentration required for maximum activation and the log P of the solvent. The results provide a foundation for the development towards the application of carotenoid cleavage dioxygenases as in vitro biocatalysts for the production of norisoprenoids and apocarotenals from carotenoids.  相似文献   

6.
Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes that oxidatively cleave carotenoids into apocarotenoids. Dioxygenases have been identified in plants and animals and produce a wide variety of cleavage products. Despite what is known about apocarotenoids in higher organisms, very little is known about apocarotenoids and CCDs in microorganisms. This study surveyed cleavage activities of ten putative carotenoid cleavage dioxygenases from five different cyanobacteria in recombinant Escherichia coli cells producing different carotenoid substrates. Three CCD homologs identified in Nostoc sp. PCC 7120 were purified, and their cleavage activities were investigated. Two of the three enzymes showed cleavage of beta,beta-carotene at the 9,10 and 15,15' positions, respectively. The third enzyme did not cleave full-length carotenoids but cleaved the apocarotenoid beta-apo-8'-carotenal at the 9,10 position. 9,10-Apocarotenoid cleavage specificity has previously not been described. The diversity of carotenoid cleavage activities identified in one cyanobacteria suggests that CCDs not only facilitate the degradation of photosynthetic pigments but generate apocarotenals with yet to be determined biological roles in microorganisms.  相似文献   

7.
Recent studies with the high-tillering mutants in rice (Oryza sativa), the max (more axillary growth) mutants in Arabidopsis thaliana and the rms (ramosus) mutants in pea (Pisum sativum) have indicated the presence of a novel plant hormone that inhibits branching in an auxin-dependent manner. The synthesis of this inhibitor is initiated by the two CCDs [carotenoid-cleaving (di)oxygenases] OsCCD7/OsCCD8b, MAX3/MAX4 and RMS5/RMS1 in rice, Arabidopsis and pea respectively. MAX3 and MAX4 are thought to catalyse the successive cleavage of a carotenoid substrate yielding an apocarotenoid that, possibly after further modification, inhibits the outgrowth of axillary buds. To elucidate the substrate specificity of OsCCD8b, MAX4 and RMS1, we investigated their activities in vitro using naturally accumulated carotenoids and synthetic apocarotenoid substrates, and in vivo using carotenoid-accumulating Escherichia coli strains. The results obtained suggest that these enzymes are highly specific, converting the C27 compounds beta-apo-10'-carotenal and its alcohol into beta-apo-13-carotenone in vitro. Our data suggest that the second cleavage step in the biosynthesis of the plant branching inhibitor is conserved in monocotyledonous and dicotyledonous species.  相似文献   

8.
Apocarotenoids resulting from the oxidative cleavage of carotenoids serve as important signaling and accessory molecules in a variety of biological processes. The enzymes catalyzing these reactions are referred to as carotenases or carotenoid oxygenases. Whether they act according to a monooxygenase mechanism, requiring two oxygens from different sources, or a dioxygenase mechanism is still a topic of controversy. In this study, we utilized the readily available beta-apo-8'-carotenal as a substrate for the heterologously expressed AtCCD1 protein from Arabidopsis thaliana to investigate the oxidative cleavage mechanism of the 9,10 double bond of carotenoids. Beta-ionone and a C(17)-dialdehyde were detected as products by gas and liquid chromatography-mass spectrometry as well as NMR analysis. Labeling experiments using H(2)(18)O or (18) O(2) showed that the oxygen in the keto-group of beta-ionone is derived solely from molecular dioxygen. When experiments were performed in an (18)O(2)-enriched atmosphere, a substantial fraction of the C(17)-dialdehyde contained labeled oxygen. The results unambiguously demonstrate a dioxygenase mechanism for the carotenase AtCCD1 from A. thaliana.  相似文献   

9.
Phytoene synthase catalyzes the dimerization of two molecules of geranylgeranyl pyrophosphate to phytoene and has been shown to be rate limiting for the synthesis of carotenoids. To elucidate if the capacity to produce phytoene is limiting also in the seed of Arabidopsis (Wassilewskija), a gene coding for an endogenous phytoene synthase was cloned and coupled to a seed-specific promoter, and the effects of the overexpression were examined. The resulting transgenic plants produced darker seeds, and extracts from the seed of five overexpressing plants had a 43-fold average increase of beta-carotene and a total average amount of beta-carotene of approximately 260 microg g-1 fresh weight. Lutein, violaxanthin, and chlorophyll were significantly increased, whereas the levels of zeaxanthin only increased by a factor 1.1. In addition, substantial levels of lycopene and alpha-carotene were produced in the seeds, whereas only trace amounts were found in the control plants. Seeds from the transgenic plants exhibited delayed germination, and the degree of delay was positively correlated with the increased levels of carotenoids. The abscisic acid levels followed the increase of the carotenoids, and plants having the highest carotenoid levels also had the highest abscisic acid content. Addition of gibberellic acid to the growth medium only partly restored germination of the transgenic seeds.  相似文献   

10.
AtCCD1 and AtNCED3 are related carotenoid cleavage enzymes from Arabidopsis thaliana that catalyze the oxidative cleavage of, respectively, the 9,10 (9',10') double bonds of carotenoid substrates such as beta-carotene, and the 11,12 double bond of 9-cis epoxycarotenoids. Although the cellular and cleavage functionalities of these enzymes have been reported, their mechanisms and related structural environments mediating these disparate specificities in homologous enzymes have not been well characterized. By relating the differences observed in UV and visible light absorption and Cu(II) electron paramagnetic signals to variations in sequence alignments and 3-D homology models of the two A. thaliana enzymes, we identified a putatively proximal cysteine residue (Cys352) in AtCCD1 that is not conserved in AtNCED3. Spectral analysis of the Cys to Ala mutant confirmed its uniqueness and proximity to the metal binding site, but precluded any role for the residue in the mediation of the observed metal binding affinity or associated steric constraint differences. Further analysis of kinetic substrate cleavage properties indicated a decrease in Vmax and a subtle increase in Km for the C352A mutant compared with those observed for the wild-type, thus confirming catalytic site proximity and suggesting possible roles for the unique cysteine in the modulation of substrate affinity and (or) the reaction rate of AtCCD1.  相似文献   

11.
12.
In many organisms, various enzymes mediate site-specific carotenoid cleavage to generate biologically active apocarotenoids. These carotenoid-derived products include provitamin A, hormones, and flavor and fragrance molecules. In plants, the CCD1 enzyme cleaves carotenoids at 9,10 (9',10') bonds to generate multiple apocarotenoid products. Here we systematically analyzed volatile apocarotenoids generated by maize CCD1 (ZmCCD1) from multiple carotenoid substrates. ZmCCD1 did not cleave geranylgeranyl diphosphate or phytoene but did cleave other linear and cyclic carotenoids, producing volatiles derived from 9,10 (9',10') bond cleavage. Additionally the Arabidopsis, maize, and tomato CCD1 enzymes all cleaved lycopene to generate 6-methyl-5-hepten-2-one. 6-Methyl-5-hepten-2-one, an important flavor volatile in tomato, was produced by cleavage of the 5,6 or 5',6' bond positions of lycopene but not geranylgeranyl diphosphate, zeta-carotene, or phytoene. In vitro, ZmCCD1 cleaved linear and cyclic carotenoids with equal efficiency. Based on the pattern of apocarotenoid volatiles produced, we propose that CCD1 recognizes its cleavage site based on the saturation status between carbons 7 and 8 (7' and 8') and carbons 11 and 12 (11' and 12') as well as the methyl groups on carbons 5, 9, and 13 (5', 9', and 13').  相似文献   

13.
Plant carotenoid cleavage oxygenases and their apocarotenoid products   总被引:11,自引:0,他引:11  
The oxidative cleavage of carotenoids leads to the production of apocarotenoids and is catalyzed by a family of carotenoid cleavage dioxygenases (CCDs). CCDs often exhibit substrate promiscuity, which probably contributes to the diversity of apocarotenoids found in nature. Biologically and commercially important apocarotenoids include the phytohormone abscisic acid, the visual and signaling molecules retinal and retinoic acid, and the aromatic volatile beta-ionone. Unexpected properties associated with the CCD catalytic products emphasize their role in many aspects of plant growth and development. For instance, CCD7 and CCD8 produce a novel, graft-transmissible hormone that controls axillary shoot growth in plants. Here, CCDs are discussed according to their roles in the biosynthesis of these products. Recent studies regarding their mechanism of action are also addressed.  相似文献   

14.
The plant growth regulator, abscisic acid (ABA), is synthesized via the oxidative cleavage of an epoxy-carotenoid. Specifically, a double bond is cleaved by molecular oxygen and an aldehyde is formed at the site of cleavage in both products. The Vp14 gene from maize encodes an oxidative cleavage enzyme for ABA biosynthesis and the recombinant VP14 protein catalyzes the cleavage reaction in vitro. The enzyme has a strict requirement for a 9-cis double bond adjacent to the site of cleavage (the 11-12 bond), but shows some plasticity in other features of carotenoids that are cleaved. A kinetic analysis with the 9-cis isomer of five carotenoids displays several substrate activity relationships. One of the carotenoids was not readily cleaved, but inhibited the cleavage of another substrate in mixed assays. Of the remaining four carotenoids used in this study, three of the substrates have similar V(max) values. The V(max) for the cleavage of one carotenoid substrate was significantly higher. Molecular modeling and several three-dimensional quantitative substrate-activity relationship programs were used to analyze these results. In addition to a 9-cis double bond, the presence and orientation of the ring hydroxyl affects substrate binding or the subsequent cleavage. Additional variations that affect substrate cleavage are proposed.  相似文献   

15.
Beta-carotene 15,15'-monooxygenase (BCO), formerly known as beta-carotene 15,15'-dioxygenase, catalyzes the first step in the synthesis of vitamin A from dietary carotenoids. We have biochemically and enzymologically characterized the purified recombinant human BCO enzyme. A highly active BCO enzyme was expressed and purified to homogeneity from baculovirus-infected Spodoptera frugiperda 9 insect cells. The K(m) and V(max) of the enzyme for beta-carotene were 7 microm and 10 nmol retinal/mg x min, respectively, values that corresponded to a turnover number (k(cat)) of 0.66 min(-1) and a catalytic efficiency (k(cat)/K(m)) of approximately 10(5) m(-1) x min(-1). The enzyme existed as a tetramer in solution, and substrate specificity analyses suggested that at least one unsubstituted beta-ionone ring half-site was imperative for efficient cleavage of the carbon 15,15'-double bond in carotenoid substrates. High levels of BCO mRNA were observed along the whole intestinal tract, in the liver, and in the kidney, whereas lower levels were present in the prostate, testis, ovary, and skeletal muscle. The current data suggest that the human BCO enzyme may, in addition to its well established role in the digestive system, also play a role in peripheral vitamin A synthesis from plasma-borne provitamin A carotenoids.  相似文献   

16.
17.
18.
Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.  相似文献   

19.
20.
Cline MG  Oh C 《Annals of botany》2006,98(4):891-897
BACKGROUND AND AIMS: Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. METHODS: The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). KEY RESULTS: Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. CONCLUSION: The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号