首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.  相似文献   

3.
4.
5.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

6.
NF-kappaB activation is mediated by the IKK signalsome. Though this signalsome is comprised of IKK-1, IKK-2, and NEMO/IKKgamma, it is the interaction between IKK-2 and NEMO that is critical to formation of a functional signalsome. More specifically, previous reports have indicated that this interaction involves the C-terminal LDWSWL residues of IKK-2 (called the Nemo Binding Domain (NBD)) and the N-terminus of NEMO. In an effort to characterize the IKK-2:NEMO interaction, we have investigated several NBD-containing peptides for their ability to bind NEMO and inhibit the critical IKK-2:NEMO interaction. The six residue NBD peptide, LDWSWL, showed modest binding to NEMO and little inhibition of the IKK-2:NEMO interaction, whereas peptides containing the NBD plus additional flanking amino acids (NBD-containing peptides) more effectively bound NEMO and inhibited the interaction. These longer NBD-containing peptides may be required to give the NBD an appropriate conformation for recognition by NEMO and/or to provide for additional interactions with NEMO.  相似文献   

7.
FIP3, isolated as a type 2 adenovirus E3-14.7-kDa interacting protein, is an essential component of the multimeric IkappaB-alpha kinase (IKK) complex and has been shown to interact with various components (Fas receptor-interacting protein, NF-kappaB-inducing kinase, IKKbeta) of the NF-kappaB activation pathway. FIP3 has also been shown to repress basal and tumor necrosis factor (TNF) alpha-induced NF-kappaB activity as well as to induce cell death when overexpressed. The adenovirus E3-14.7-kDa protein (E3-14.7K) is an inhibitor of TNFalpha-induced cell death. In the current study, we generated deletion mutants to map the domains of FIP3, which are responsible for its various functions. The NF-kappaB inhibitory activity and the E3-14.7K binding domains were mapped at the carboxyl half of the FIP3 protein. We also found that the carboxyl-terminal half of FIP3 blocked TNFalpha-induced IkappaB-alpha phosphorylation and subsequent degradation, which suggests that the stabilization of the cytoplasmic inhibitor of NF-kappaB underlies the FIP3 inhibition of NF-kappaB activity. The amino-terminal 119 amino acids were responsible for the FIP3-IKKbeta and FIP3-IKKalpha interaction, and the middle of the protein (amino acids 201-300) appeared to be both the FIP3 self-association domain as well as the FIP3-Fas receptor-interacting protein interaction domain. Thus, FIP3 might serve as a scaffold protein to organize the various components of the IkappaB-alpha kinase complex. Whereas the full-length protein is required for efficient cell death, the amino-terminal 200 amino acids are sufficient to cause rounding and detachment of the cells from the monolayer.  相似文献   

8.
NF-kappaB is sequestered in the cytoplasm by the inhibitory IkappaB proteins. Stimulation of cells by agonists leads to the rapid phosphorylation of IkappaBs leading to their degradation that results in NF-kappaB activation. IKK-1 and IKK-2 are two direct IkappaB kinases. Two recently identified novel IKKs are IKK-i and TBK-1. We have cloned, expressed, and purified to homogeneity recombinant human (rh)IKK-i and rhTBK-1 and compared their enzymatic properties with those of rhIKK-2. We show that rhIKK-i and rhTBK-1 are enzymatically similar to each other. We demonstrate by phosphopeptide mapping and site-specific mutagenesis that rhIKK-i and rhTBK-1 are phosphorylated on serine 172 in the mitogen-activated protein kinase kinase activation loop and that this phosphorylation is necessary for kinase activity. Also, rhIKK-i and rhTBK-1 have differential peptide substrate specificities compared with rhIKK-2, the mitogen-activated protein kinase kinase activation loop of IKK-2 being a more favorable substrate than the IkappaBalpha peptide. Finally, using analogs of ATP, we demonstrate unique differences in the ATP-binding sites of rhIKK-i, rhTBK-1, and rhIKK-2. Thus, although these IKKs are structurally similar, their enzymatic properties may provide insights into their unique functions.  相似文献   

9.
We previously identified a 10-amino acid region from the Y domain of phospholipase Cbeta2 (PLCbeta2) that associates with G-protein betagamma subunits (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154). We mapped the site for cross-linking of a synthetic peptide (N20K) corresponding to this Y domain region to Cys(25) within the amino-terminal coiled-coil domain of Gbetagamma (Yoshikawa, D. M., Bresciano, K., Hatwar, M., and Smrcka, A. V. (2001) J. Biol. Chem. 276, 11246-11251). Here, further experiments with a series of variable length cross-linking agents refined the site of N20K binding to within 4.4-6.7 angstroms of Cys(25). A mutant within the amino terminus of the Gbeta subunit, Gbeta(1)(23-27)gamma(2), activated PLCbeta2 more effectively than wild type, with no significant change in the EC(50), indicating that this region is directly involved in the catalytic regulation of PLCbeta2. This mutant was deficient in cross-linking to N20K, suggesting that a binding site for the peptide had been eliminated. Surprisingly, N20K could still inhibit Gbeta(1)(23-27)gamma(2)-dependent activation of PLC, suggesting a second N20K binding site. Competition analysis with a peptide that binds to the Galpha subunit switch II binding surface of Gbetagamma indicates a second N20K binding site at this surface. Furthermore, mutations to the N20K region within the Y-domain of full-length PLCbeta2 inhibited Gbetagamma-dependent regulation of the enzyme, providing further evidence for aGbetagamma binding site within the catalytic domain of PLCbeta2. The data support a model with two modes of PLC binding to Gbetagamma through the catalytic domain, where interactions with the amino-terminal coiled-coil domain are inhibitory, and interactions with the Galpha subunit switch II binding surface are stimulatory.  相似文献   

10.
Inhibitor-1 (I-1) and inhibitor-2 (I-2) selectively inhibit type 1 protein serine/threonine phosphatases (PP1). To define the molecular basis for PP1 inhibition by I-1 and I-2 charged-to-alanine substitutions in the Saccharomyces cerevisiae, PP1 catalytic subunit (GLC7), were analyzed. Two PP1 mutants, E53A/E55A and K165A/E166A/K167A, showed reduced sensitivity to I-2 when compared with wild-type PP1. Both mutants were effectively inhibited by I-1. Two-hybrid analysis and coprecipitation or pull-down assays established that wild-type and mutant PP1 catalytic subunits bound I-2 in an identical manner and suggested a role for the mutated amino acids in enzyme inhibition. Inhibition of wild-type and mutant PP1 enzymes by full-length I-2(1-204), I-2(1-114), and I-2(36-204) indicated that the mutant enzymes were impaired in their interaction with the N-terminal 35 amino acids of I-2. Site-directed mutagenesis of amino acids near the N terminus of I-2 and competition for PP1 binding by a synthetic peptide encompassing an I-2 N-terminal sequence suggested that a PP1 domain composed of amino acids Glu-53, Glu-55, Asp-165, Glu-166, and Lys-167 interacts with the N terminus of I-2. This defined a novel regulatory interaction between I-2 and PP1 that determines I-2 potency and perhaps selectivity as a PP1 inhibitor.  相似文献   

11.
Phosphodiesterases (PDEs) comprise a superfamily of phosphohydrolases that degrade 3',5'-cyclic nucleotides. All known mammalian PDEs are dimeric, but the functional significance of dimerization is unknown. A deletion mutant of cGMP-binding cGMP-specific PDE (PDE5), encoding the 357 carboxyl-terminal amino acids including the catalytic domain, has been generated, expressed, and purified. The K(m) of the catalytic fragment for cGMP (5.5 +/- 0. 51 microM) compares well with those of the native bovine lung PDE5 (5.6 microM) and full-length wild type recombinant PDE5 (2 +/- 0.4 microM). The catalytic fragment and full-length PDE5 have similar IC(50) values for the inhibitors 3-isobutyl-1-methylxanthine (20 microM) and sildenafil (Viagra(TM))(4 nM). Based on measured values for Stokes radius (29 A) and sedimentation coefficient (2.9 S), the PDE5 catalytic fragment has a calculated molecular mass of 35 kDa, which agrees well with that predicted by amino acid content (43.3 kDa) and with that estimated using SDS-polyacrylamide gel electrophoresis (39 kDa). The combined data indicate that the recombinant PDE5 catalytic fragment is monomeric, and retains the essential catalytic features of the dimeric, full-length enzyme. Therefore, the catalytic activity of PDE5 holoenzyme requires neither interaction between the catalytic and regulatory domains nor interactions between subunits of the dimer.  相似文献   

12.
Abstract: Isolated microtubule-associated protein 2 (MAP2), τ factor, and tubulin were phosphorylated by a purified Ca2+, calmodulin-dependent protein kinase (640K enzyme) from rat brain. The phosphorylation of MAP2 and τ factor separately induced the inhibition of microtubule assembly, in accordance with the degree. Tubulin phosphorylation by the 640K enzyme induced the inhibition of microtubule assembly, whereas the effect of tubulin phosphorylation by the catalytic subunit was undetectable. The effects of tubulin and MAPs phosphorylation on microtubule assembly were greater than that of either tubulin or MAPs phosphorylation. Because MAP2, τ factor, and tubulin were also phosphorylated by the catalytic subunit of type-II cyclic AMP-dependent protein kinase from rat brain, the kinetic properties and phosphorylation sites were compared. The amount of phosphate incorporated into each microtubule protein was three to five times higher by the 640K enzyme than by the catalytic subunit. The K m values of the 640K enzyme for microtubule proteins were four to 24 times lower than those of the catalytic subunit. The peptide mapping analysis showed that the 640K enzyme and the catalytic subunit incorporated phosphate into different sites on MAP2, τ factor, and tubulin. Investigation of phosphoamino acids revealed that only the seryl residue was phosphorylated by the catalytic subunit, whereas both seryl and threonyl residues were phosphorylated by the 640K enzyme. These data suggest that the Ca2+, calmodulin system via phosphorylation of MAP2, τ factor, and tubulin by the 640K enzyme is more effective than the cyclic AMP system on the regulation of microtubule assembly.  相似文献   

13.
Abstract: The γ2 subunit of the GABAA receptor (GABAA-R) is alternatively spliced. The long variant (γ2L) contains eight additional amino acids that possess a consensus sequence site for protein phosphorylation. Previous studies have demonstrated that a peptide or fusion protein containing these eight amino acids is a substrate for protein kinase C (PKC), but not cyclic AMP-dependent protein kinase A (PKA)-stimulated phosphorylation. We have examined the ability of PKA, PKC, and Ca2+/calmodulin-dependent protein kinase (CAM kinase II) to phosphorylate a synthetic peptide corresponding to residues 336–351 of the intracellular loop of the γ2L subunit and inclusive of the alternatively spliced phosphorylation consensus sequence site. PKC and CAM kinase II produced significant phosphorylation of this peptide, but PKA was ineffective. The K m values for PKC-and CAM kinase II-stimulated phosphorylation of this peptide were 102 and 35 μM , respectively. Maximal velocities of 678 and 278 nmol of phosphate/min/mg were achieved by PKC and CAM kinase II, respectively. The phosphorylation site in the eight-amino-acid insert of the γ2L subunit has been shown to be necessary for ethanol potentiation of the GABAA-R. Thus, our results suggest that PKC, CAM kinase II, or both may play a role in the effects of ethanol on GABAergic function.  相似文献   

14.
We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  相似文献   

15.
The exogenous addition of the catalytic subunit of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), or calmodulin (CaM) induced rapid phosphorylation of the ryanodine receptor (Ca2+ release channel) in canine cardiac microsomes treated with 1 mM [gamma-32P]ATP. Added protein kinase C (PKC) also phosphorylated the cardiac ryanodine receptor but at a relatively slow rate. The observed level of PKA-, PKG-, or PKC-dependent phosphorylation of the ryanodine receptor was comparable to the maximum level of [3H]ryanodine binding in cardiac microsomes, whereas the level of CaM-dependent phosphorylation was about 4 times greater. Phosphorylation by PKA, PKG, and PKC increased [3H]ryanodine binding in cardiac microsomes by 22 +/- 5, 17 +/- 4, and 15 +/- 9% (average +/- SD, n = 4-5), respectively. In contrast, incubation of microsomes with 5 microM CaM alone and 5 microM CaM plus 1 mM ATP decreased [3H]ryanodine binding by 38 +/- 14 and 53 +/- 15% (average +/- SD, n = 6), respectively. Phosphopeptide mapping and phosphoamino acid analysis provided evidence suggesting that PKA, PKG, and PKC predominantly phosphorylate serine residue(s) in the same phosphopeptide (peptide 1), whereas the endogenous CaM-kinase phosphorylates serine residue(s) in a different phosphopeptide (peptide 4). Photoaffinity labeling of microsomes with photoreactive 125I-labeled CaM revealed that CaM bound to a high molecular weight protein, which was immunoprecipitated by a monoclonal antibody against the cardiac ryanodine receptor. These results suggest that protein kinase-dependent phosphorylation and CaM play important regulatory roles in the function of the cardiac sarcoplasmic reticulum Ca2+ release channel.  相似文献   

16.
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.  相似文献   

17.
S100B(betabeta) is a dimeric Ca2+-binding protein that is known to inhibit the protein kinase C (PKC)-dependent phosphorylation of several proteins. To further characterize this inhibition, we synthesized peptides based on the PKC phosphorylation domains of p53 (residues 367-388), neuromodulin (residues 37-53), and the regulatory domain of PKC (residues 19-31), and tested them as substrates for PKC. All three peptides were shown to be good substrates for the catalytic domain of PKC. As for full-length p53 (Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. 1992. Proc Natl Acad Sci USA 89:11627-11631), S100B(betabeta) binds the p53 peptide and inhibits its PKC-dependent phosphorylation (IC50 = 10 +/- 7 microM) in a Ca2+-dependent manner. Similarly, phosphorylation of the neuromodulin peptide and the PKC regulatory domain peptide were inhibited by S100B(betabeta) in the presence of Ca2+ (IC50 = 17 +/- 5 microM; IC50 = 1 +/- 0.5 microM, respectively). At a minimum, the C-terminal EF-hand Ca2+-binding domain (residues 61-72) of each S100beta subunit must be saturated to inhibit phosphorylation of the p53 peptide as determined by comparing the Ca2+ dependence of inhibition ([Ca]IC50 = 29.3 +/- 17.6 microM) to the dissociation of Ca2+ from the C-terminal EF-hand Ca2+-binding domain of S100B(betabeta).  相似文献   

18.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway.  相似文献   

20.
Kalafatis M  Beck DO 《Biochemistry》2002,41(42):12715-12728
We have recently shown that amino acid region 307-348 of factor Va heavy chain (42 amino acids, N42R) is critical for cofactor activity and may contain a binding site for factor Xa and/or prothrombin [(2001) J. Biol. Chem. 276, 18614-18623]. To ascertain the importance of this region for factor Va cofactor activity, we have synthesized eight overlapping peptides (10 amino acid each) spanning amino acid region 307-351 of the heavy chain of factor Va and tested them for inhibition of prothrombinase activity. The peptides were also tested for the inhibition of the binding of factor Va to membrane-bound active site fluorescent labeled Glu-Gly-Arg human factor Xa ([OG488]-EGR-hXa). Factor Va binds specifically to membrane-bound [OG488]-EGR-hXa (10nM) with half-maximum saturation reached at approximately 6 nM. N42R was also found to interact with [OG488]-EGR-hXa with half-maximal saturation observed at approximately 230 nM peptide. N42R was found to inhibit prothrombinase activity with an IC50 of approximately 250 nM. A nonapeptide containing amino acid region 323-331 of factor Va (AP4') was found to be a potent inhibitor of prothrombinase. Kinetic analyses revealed that AP4' is a noncompetitive inhibitor of prothrombinase with respect to prothrombin, with a K(i) of 5.7 microM. Thus, the peptide interferes with the factor Va-factor Xa interaction. Displacement experiments revealed that the nonapeptide inhibits the direct interaction of factor Va with [OG488]-EGR-hXa (IC50 approximately 7.5 microM). The nonapeptide was also found to bind directly to [OG488]-EGR-hXa and to increase the catalytic efficiency of factor Xa toward prothrombin in the absence of factor Va. In contrast, a peptadecapeptide from N42R encompassing amino acid region 337-351 of factor Va (P15H) had no effect on either prothrombinase activity or the ability of the cofactor to interact with [OG488]-EGR-hXa. Our data demonstrate that amino acid sequence 323-331 of factor Va heavy chain contains a binding site for factor Xa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号