首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have identified a new class of ribosomal protein (RP) genes that appear to have been retrotransposed from X-linked RP genes. Mammalian ribosomes are composed of four RNA species and 79 different proteins. Unlike RNA constituents, each protein is typically encoded by a single intron- containing gene. Here we describe functional autosomal copies of the X-linked human RP genes, which we designated RPL10L (ribosomal protein L10-like gene), RPL36AL and RPL39L after their progenitors. Because these genes lack introns in their coding regions, they were likely retrotransposed from X-linked genes. The identities between the retrotransposed genes and the original X-linked genes are 89-95% in their nucleotide sequences and 92-99% in their amino acid sequences, respectively. Northern blot and PCR analyses revealed that RPL10L and RPL39L are expressed only in testis, whereas RPL36AL is ubiquitously expressed. Although the role of the autosomal RP genes remains unclear, they may have evolved to compensate for the reduced dosage of X-linked RP genes.  相似文献   

3.
4.
Gene Expression in Adult Metafemales of Drosophila Melanogaster   总被引:4,自引:3,他引:1  
The expression of selected X-linked and autosomal genes was examined in metafemales (3X:2A) compared to diploid sisters. Three enzyme activities (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, beta-hydroxyacid dehydrogenase) encoded by X-linked genes are not significantly different in the two classes of flies. In contrast, three autosomally encoded enzyme activities (alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, isocitrate dehydrogenase) are reduced in metafemales. Protein and DNA comparisons between metafemales and diploid sisters show a lowered level of total protein whereas the total DNA measurements are similar. Thus, the total cell number in metafemales is basically unchanged but gene expression is reduced. Phenotypic analysis of three autosomal loci, glass (gl), purple (pr) and pink-peach (pp), show that all three have lowered expression in metafemales while the X-linked loci, white-apricot (wa) and Bar (B), are dosage compensated. Quantitative dot blot analysis of messenger RNA levels of the second chromosomal locus, alcohol dehydrogenase (Adh), and the X chromosomal locus, rudimentary (r), show that Adh has reduced expression and r is partially compensated per total RNA in metafemales. It is proposed that the increased dosage of the X chromosome inversely affects both the X and autosomal gene expression but the simultaneous increased dosage of the structural genes on the X results in dosage compensation. The reduced levels of expression of autosomal genes could contribute to the great inviability of metafemales.  相似文献   

5.
Several phosphoglycerate kinase genes were previously detected in the human genome by blot hybridization with a phosphoglycerate kinase cDNA probe. Using subcloned fragments of the cDNA we estimate the presence of four independent phosphoglycerate kinase genes. These genes have been mapped to both the human X chromosome (band q13) and chromosome 6 (p12-21.1) using a panel of human-rodent somatic cell hybrids and by chromosomal in situ hybridization. The genomic distribution of phosphoglycerate kinase sequences is conserved in man and mouse, not only for the X chromosome, but also for linkage to the respective major histocompatibility complexes. Molecular cloning of X-linked phosphoglycerate kinase sequences led to the identification of a novel intronless phosphoglycerate kinase pseudogene which is localized proximal to the active gene on the X chromosome.  相似文献   

6.
Comparative mapping studies of X-linked genes in mammals have provided insights into the evolution of the X chromosome. Many reptiles including the American alligator, Alligator mississippiensis, do not appear to possess heteromorphic sex chromosomes, and sex is determined by the incubation temperature of the egg during embryonic development. Mapping of homologues of mammalian X-linked genes in reptiles could lead to a greater understanding of the evolution of vertebrate sex chromosomes. One of the genes used in the mammalian mapping studies was ZFX, an X-linked copy of the human ZFY gene which was originally isolated as a candidate for the mammalian testis-determining factor (TDF). ZFX is X-linked in eutherians, but maps to two autosomal locations in marsupials and monotremes, close to other genes associated with the eutherian X. The alligator homologue of the ZFY/ZFX genes, Zfc, has been isolated and described previously. A detailed karyotype of A. mississippiensis is presented, together with chromosomal in situ hybridisation data localising the Zfc gene to chromosome 3. Further chromosomal mapping studies using eutherian X-linked genes may reveal conserved chromosomal regions in the alligator that have become part of the eutherian X chromosome during evolution.  相似文献   

7.
Molecular cloning studies have now identified five structurally homologous genes encoding the biosynthesis of the human dopamine receptors, DRD1, DRD2, DRD3, DRD4, and DRD5. Two of these dopamine receptors (DRD1 and DRD5) are encoded by intronless genes. To ascertain whether there are other intronless genes that share identity with the gene (DRD5) encoding the DRD5 receptor, we used a cloning method based on the polymerase chain reaction (PCR). Human genomic DNA was amplified by PCR with oligodeoxyribonucleotides (oligos) based on the DRD5 nucleotide (nt) sequence. Amplification of nt sequences between these oligos allowed the isolation of two independent intronless genes that share identity with DRD5. The full-length clones have also been isolated by screening human genomic libraries. The deduced amino acid sequences for these genes, PG-1 and PG-2, share 91% and 92% identity to DRD5, respectively. However, each of the genes contains differences in the coding regions that would render these genes incapable of encoding functional receptors. Thus, the human genome contains at least two DRD5 pseudogenes, consistent with in situ human chromosomal hybridization analysis which reveals the presence of two pseudogenes.  相似文献   

8.
The enlargement of the genome size and the decrease in genome compactness with increase in the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, it has been suggested that the insertion of transposable elements might have an important role in driving intron evolution. The analysis of large portions of the human genome demonstrated that a relatively recent (50 to 100 MYA) accumulation of transposable elements appears to be biased, favoring a preferential insertion of LINE1 transposons into sex chromosomes rather than into autosomes. In the present work, the effect of chromosomal location on the increase in size of introns was evaluated with a comparative analysis performed on pairs of human paralogous genes, one located on the X chromosome and the second on an autosome. A phylogenetic analysis was also performed on the X-encoded proteins and their paralogs to confirm orthology-paralogy and to approximately estimate the time of gene duplication. Statistical analysis of total intron length for each pair of paralogous genes provided no evidence for a larger size of introns in the gene copies located on the X chromosome. On the opposite, introns of autosomal genes were found to be significantly longer than introns of their X-linked paralogs. Likewise, LINE1 elements were not significantly more frequent in X-chromosome introns, whereas the frequency of SINE elements showed a marginally significant bias toward autosomal introns.  相似文献   

9.
Molecular evolution of the human Pgk-2 retroposon.   总被引:3,自引:0,他引:3       下载免费PDF全文
The human phosphoglycerate kinase (Pgk) gene family includes the functional, intronless Pgk-2 gene and the intronless psi hPgk-1 pseudogene, both of which are retroposons of the intron-containing Pgk-1 gene. The divergence of the Pgk-2 retroposon from Pgk-1 is compared with that of the psi hPgk-1 retroposon from Pgk-1 to reveal nucleotide characteristics diagnostic of functional genes. A comparison of the human and mouse Pgk genes indicates that Pgk-2 has evolved more rapidly than Pgk-1 since the two genes diverged early in mammalian evolution, but that the lack of introns in Pgk-2 may have diminished inter-exon variation. The hypothesis that codon bias is related to expression level is shown not to hold for the Pgk genes; however, the idea that a deficiency of TA and CG dinucleotides and an excess of TG and CT dinucleotides contributes to codon bias is supported. Finally, the hypothesis that the Pgk-2 retroposon initially included a copy of the Pgk-1 'housekeeping' promoter and subsequently evolved a tissue-specific promoter is examined and supported. It is concluded that this process involved the loss of the 5' CpG island present in the Pgk-1 gene, and that selection for cell type-specific expression of Pgk-2 at high levels has driven the divergence of this retroposon from its progenitor, Pgk-1.  相似文献   

10.
X-linked genetic homologies between mouse and man   总被引:6,自引:0,他引:6  
M T Davisson 《Genomics》1987,1(3):213-227
X-linked genes are conserved among all mammalian species, but the organization of genes on the X chromosome varies from one species to another. This review summarizes the evidence for established gene homologies between mice and human beings. It also describes genes that are possible homologies because of their locations in the human and murine X chromosomes and similarities in the phenotypes they produce. Based on current knowledge of homologous gene location, the human and murine X chromosomes appear to contain four highly conserved segments and differ in organization by only three to four simple chromosomal rearrangements.  相似文献   

11.
Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats.  相似文献   

12.
Using a heterologous rat cDNA probe, we have identified a 14.7 kbp Drosophila melanogaster genomic clone containing the X-linked gene Pgd+, which encodes the enzyme 6-phosphogluconate dehydrogenase (6PGD). We used in situ hybridization to larval polytene chromosomes, a somatic transient expression assay for enzyme activity, and the rescue of the lethal Pgd- phenotype by germline transformation to verify the identity of the gene. A 7.4 kbp fragment including the gene and approximately 1.2 kbp of upstream and 1.8 kbp of downstream sequences was relocated to autosomal ectopic sites by germline transformation; this transduced gene exhibits levels of enhanced activity in males comparable to those of the indigenous gene at its normal X chromosome locus. We conclude that the sequences responsible for dosage compensation of Pgd+ are included in this fragment.  相似文献   

13.
HRAS and KRAS are the cellular homologs of the oncogenic transforming genes found in the Harvey strain of murine sarcoma virus and the Kirsten murine sarcoma virus, respectively. Phyla as diverse as insects, birds, and mammals possess distinct HRAS and KRAS sequences, suggesting that these genes are essential to metazoa. In this report, we used a clone panel of Chinese hamster X mouse C11D somatic cell hybrids segregating hamster chromosomes to map those genes. Southern filter hybridization analyses of the hybrids revealed that hamster HRAS and KRAS gene sequences are on chromosomes 3 and 8, respectively. These gene assignments are consistent with the conservation of autosomal gene linkage groups observed among hamsters, humans, and mice and may provide insight into specific chromosomal alterations that have been observed during the spontaneous neoplastic transformation of Chinese hamster fibroblasts in vitro.  相似文献   

14.
15.
The Influence of Whole-Arm Trisomy on Gene Expression in Drosophila   总被引:7,自引:5,他引:2       下载免费PDF全文
The biochemical consequences of extensive aneuploidy in Drosophila have been examined by measuring the levels of specific proteins in larvae trisomic for entire chromosome arms. By far the most common effect is a reduction in gene product levels (per gene template) by one-third from the diploid quantity, consistent with the model that concentration-dependent repressors of these loci reside on the duplicated chromosome arms. Most loci appear sensitive to such repression in one or more of the trisomies examined, suggesting that such regulatory loci might be quite common. Repression of gene-product levels in trisomies may significantly contribute to their inviability. Few loci are activated in trisomies implying that most factors necessary for gene expression are in excess. While autosomal trisomies can repress the expression of both X-linked and autosomal loci, X-chromosomal trisomies have little effect on most autosomal genes. A family of genes coding for larval serum proteins do not respond similarly in trisomies, suggesting that regulation operates on a process which is not common to their coordinate regulation. Finally, Adh genes transposed to new chromosomal positions maintain their ability to be repressed in 3L trisomies suggesting that this response to regulation involves a closely linked cis-acting regulatory element.  相似文献   

16.
17.
18.
The X-linked color pigment (opsin) locus is known to be highly polymorphic in the squirrel monkey and other New World monkeys. To see whether this is also the case for the autosomal (blue) opsin locus, we obtained 32 squirrel monkey and 30 human blue opsin gene sequences. No amino acid polymorphism was found in either the squirrel monkey sample or the human sample, contrary to the situation at the X-linked opsin locus. This sharp contrast in the level of polymorphism might be due to differences in gene expression between the autosomal and the X-linked loci. At the X-linked locus, heterozygote advantage can occur because, owing to X-inactivation, the two alleles in a heterozygote are expressed in different cone cells, producing two types of cone cell, whereas at the autosomal locus, heterozygote advantage cannot occur because the two alleles in a heterozygote are expressed in the same cone cells, producing only one type of cone cell (i.e., phenotypically a homozygote). From the sequence data, the levels of nucleotide diversity (pi, i.e., the number of nucleotide differences per site) are estimated: for the human sample, pi = 0.00% per nondegenerate site, 0.00% per twofold degenerate site, and 0.04% per fourfold degenerate site in the coding regions and 0.01% per site in intron 4; for the squirrel monkey sample, pi = 0.00% per nondegenerate site, 0.00% per twofold degenerate site, and 0.15% per fourfold degenerate site in the coding regions and 0.17% per site in intron 4. The blue opsin genes from the common and pygmy chimpanzees, the gorilla, the capuchin, and the howler monkey were also sequenced. Features critical to the function of the opsin are well conserved in all known mammalian sequences. However, the interhelical loops are, on average, actually more conservative than the transmembrane helical regions. In addition, these sequence data and those from some other genes indicate that the common and pygmy chimpanzees are not closely related, their divergence data being from one third to one half the date of the human-chimpanzee divergence.   相似文献   

19.
X Chromosome Inactivation during Drosophila Spermatogenesis   总被引:1,自引:1,他引:0  
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号