首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemical controls on particulate phosphorus distribution in the Humber estuary have been investigated with regard to salinity and season. Surveys of the Humber were conducted in August 1991 and January, March and June 1992. Samples were collected for particulate phosphorus, dissolved phosphorus, suspended load and salinity analysis. Particulate phosphorus forms 16 to 93% of the total phosphorus present in the water column of the Humber estuary. Total particulate phosphorus concentrations in the Humber ranged from 1 to 45 μmol l−1. This range is comparable to that observed in similar sized industrialized estuaries of the U.S.A. and northern Europe. Flocculation at low salinities was found to be a major influence on particulate phosphorus concentrations. Highest concentrations of particulate phosphorus were found in reaches below a salinity of 5 and may result in phosphorus being trapped in the sediments of the estuary. There is evidence that this phosphorus may be released as oxygen concentrations decrease during the summer. Suspended load, adsorption/desorption equilibrium and external inputs were also found to influence the particulate phosphorus concentrations.  相似文献   

2.
Hamilton  Paul B.  Gajewski  Konrad  Atkinson  David E.  Lean  David R.S. 《Hydrobiologia》2001,457(1-3):133-148
The physical and chemical limnology of 204 lakes from across the Canadian Arctic Archipelago was examined. Mean summer air temperature did not correlate well with lake chlorophyll levels due to the predominance of ultra-oligotrophic hard-water lakes located in a polar climate. Local geology influences ion budgets and is an important factor in determining pelagic phosphorus availability, carbon cycling and metal concentrations. Ratios of particulate carbon, particulate nitrogen and chlorophyll a indicate that planktonic microorganisms are not always the major producers of organic carbon in arctic lakes. Allochthonous particulate matter contributes significantly to the carbon and phosphorus budgets of small and mid-sized lakes across the Arctic, although the availability of these elements is controlled by many interacting geochemical and biological factors. Phosphorus is generally limiting, however, increases in available phosphorus, nitrogen and carbon are all required to make significant long-term differences in lake productivity. Particulate phosphorus levels can be high in lakes where phosphorus-rich shales or carbonatite bedrock are present. These phosphorus-enriched lakes are found in several areas across the mid-arctic islands, however, only small amounts of this nutrient are available as soluble reactive phosphorus. Although lakes throughout the Arctic are typically ultra-oligotrophic, they still represent an important sink for allochthonous nutrient deposition.  相似文献   

3.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

4.
Diffusive flux of bioavailable soluble reactive phosphorus (SRP) across the sediment–water interface is one mechanism by which sediments can be a source of phosphorus to the water column in aquatic systems and contribute to primary productivity. This process is dependent on sediment biogeochemistry and SRP concentration gradients at the sediment–water interface. In systems subjected to episodic external pulses of nutrient-rich water, SRP concentration gradients can have potential implications for diffusive flux. In this study, we sought to investigate two hypotheses: (1) diffusive flux of SRP from sediments is a significant source of SRP in the annual budget for the oligohaline Lake Pontchartrain estuary and (2) under SRP-depleted water column conditions following large episodic, external pulses of nitrogen-rich Mississippi River water to the estuary, internal SRP loading by diffusive flux can regenerate SRP in the water column to previously observed levels rapidly. Our specific objectives were to: (i) determine sediment, water column, and phytoplankton characteristics at multiple locations in the estuary, (ii) measure rates of SRP diffusive flux from sediments using intact cores under aerobic and anaerobic incubations, (iii) estimate the potential for water column SRP regeneration by diffusive flux under SRP-depleted conditions using a simple model, and (iv) estimate the annual load of SRP from the sediments by diffusive flux. Results indicate that diffusive flux of SRP from Lake Pontchartrain sediments likely contributes ~30–44% of the annual SRP load to the estuary. Further, internal SRP loading by diffusion has the potential to regenerate SRP in SRP-depleted waters to previously observed concentrations in <60 days. Our findings suggest that a sequence of events is feasible where external pulses of nitrogen-rich water produce phosphorus-limited conditions, followed by an internal pulse of SRP from sediments to restore nitrogen-limited conditions. This internal SRP load may be an important contributor in promoting blooms of nitrogen-fixing harmful algae under summertime low-nutrient conditions.  相似文献   

5.
In recent research, particulate and dissolved phosphorus components have been separated and characterized on the basis of their physical and chemical properties and partly by their origins.Classical operationally defined monitoring variables (dissolved reactive phosphorus, dissolved unreactive phosphorus and particulate phosphorus) are not congruent with known specific physical or chemical components of phosphorus in natural waters or with their bioavailability.Physical isolation of true particles, colloids and molecules of various sizes is possible at present although it is not recommended for routine use.Chemical characterization of particulate phosphorus is performed mainly by sediment extraction procedures (specialized for inorganic species) and — to a lesser degree — by cell extraction procedures (specialized for organic compounds). The extraction procedures are similar and physical preseparation or alternative procedures (e.g. enzymatic assays) are essential.Smaller colloids and dissolved compounds are physically separated by column chromatography and are often chemically characterized by degradation on the addition of specific enzymes.  相似文献   

6.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

7.
The release of N and P from the sediment of two ditches, one (A) dominated by filamentous algae and the other (B) by water-lilies, was estimated by core and enclosure experiments. The release rates for ditch A tended to be higher than those for ditch B. Sediment cores covered by a filamentous algae layer released about 1.5 times more N and P than those from which the layer had been removed. During the incubation of the cores in the dark at 20°C for 2–3 weeks, about 10% of the N in the filamentous algae layer was mineralized. The mineralization could be described as a first-order reaction with a rate constant of about 0.2 d–1. On average the cores of ditches A and B released about 40 mg mineral N and 3 mg.m–2.d–1 soluble reactive phosphorus. Defining the release from the sediment in the enclosures as the net increase of N and P in the water phase and in the vegetation minus the input, a negative net release,i.e. net accumulation of N and P in the sediment, was found over the summer half of the year. The negative values were due to the significant N and P input, resulting from pumping ditch water into the enclosures in order to compensate for downward seepage. From the enclosure experiments a downward seepage rate of 14 mm.d–1 and an external load of about 6 g.m–2 total N and 0.6 g.m–2 total P during the summer half of the year —i.e. 33 mg.m–2.d–1 N and 3 mg.m–2.d–1 P. respectively — was calculated for the ditches. Tentative gross release rates — based on the sum of the positive net release of N and P into the water phase over 1–2 weeks intervals and the net increase of N and P in the vegetation — converted to 20°C and allowing for underestimation of the primary production by a factor of 5, amounted to 58 mg mineral N and 7 mg.m–2.d–1 soluble reactive phosphorus during the summer half of the year. Combining the rates estimated by cores and enclosures and converting them to rates at the mean water temperature during the summer half of the year, the release of mineral N and soluble reactive phosphorus roughly amounted to 40 and 4 mg.m–2.d–1, respectively. The release rates as well as the external load indicated a relatively low eutrophication of the ditches.  相似文献   

8.
Speciation of riverine particulate phosphorus during rain events   总被引:5,自引:0,他引:5  
Suspended sediments collected during rain events were analysed to assess the maximum potential bioavailability of particulate phosphorus (PP). Physical (separation by particle size) and chemical (sequential extraction) fractionation techniques were applied. Time differentiated sampling during rain events revealed that changes in the concentrations of soluble and particle bound phosphorus, and in the proportion of different PP phases, are due to the changing contribution of various sources of runoff and to flow related variations in particle size. Size fractionation and the extraction of PP phases, can help to distinguish resuspended sediments from sediments coming directly from outside the channel. In light of a former study, investigating PP sedimentation and transformations within the sediments of Lake Sempach, our results lead to the conclusion that, at least 25% (particulate inorganic and reductive soluble P) and at most 70% of the allochthonous PP supply transported during a single rain event, may become bioavailable after early diagenesis in the lake sediments. The uncertainty is due to the unknown time span necessary for the diagenesis, at the lake sediment surface, of particulate organic phosphorus of allochthonous origin.  相似文献   

9.
Import of allochthonous material in terms of litterfall in a 3rd order stream in Mississippi coastal plain was 386g dry wt/m2/yr. Litter materials consisting of deciduous leaves, pine needles, and woody twigs collected during different seasons showed some differences in ash-free dry weight, caloric, carbon, hydrogen, nitrogen and phosphorus contents. In situ decomposition to particulate form of deciduous and pine litter enclosed in nylon litter bags showed 15% and 65%, respectively, of the litter remaining after 334 days. Downstream net transport of suspended particulate organic material in the river averaged 688,290 kg dry wt/yr with a range of 456,061 to 920,518 kg dry wt/yr. There was a tendency for the particulate organic matter load of the water to increase during ebbtide and to decrease during floodtide.Supported by the National Aeronautics and Space Administration (NASA Grant No. NGL-25-001-40) and by the National Science Foundation Biological Oceanography Section (NSF Grant No. GA-35715).  相似文献   

10.
The seasonal course of phosphorus (P) fractions of sinking particulate matter has been studied at the deepest location of dimictic eutrophic Lake Scharmützel (29.5 m) by paired sediment traps at 9 and 27 m water depth from May 1996 to December 1997. Relatively large depositional fluxes and considerably variable P fluxes, mainly carried by allochthonous particles, diatoms in spring, and iron during overturns transport almost 60% of the average water column P pool to the sediment surface. The contribution of resuspension and sediment focusing (24–34%) is relatively small. A sequential chemical P extraction of the matter entrapped revealed that ,loosely adsorbed` P contributed to 5–14%, organic bound P to 55–68%, and Ca-associated P to 3–6% of the annual P flux, depending on season and depth. The redox-sensitive (iron bound) P ranged from only 12% of the annual P flux during anoxic sulfidic conditions to 28% during oxic conditions. On an annual basis, 16–18% of sedimenting P was recycled within the water column, and 71–75% of total primary P flux was recycled at the sediment surface. Ultimately, 10–23% of P became incorporated into recent sediments indicating the long residence time for P and a high internal resupply of P for primary production.  相似文献   

11.
The dynamics of the nutrient pools and their stoichiometry as well as their control by ecosystem metabolism (benthic and planktonic) and benthic–pelagic exchanges (sedimentation rates and sediment waterfluxes) were examined in the Mediterranean littoral (Blanes Bay, NE Spain). Dissolved organic nitrogen comprised about half of the nitrogen present in the water column and the carbon pool was dominated by the inorganic pool (95% of the carbon present in the water column). The dissolved and particulate organic pools were deficient in P relative to C and N, indicating a rapid recycling of P from organic matter. The pelagic compartment was heterotrophic, supported by significant allochthonous inputs of land material, which also contributed greatly to the sedimentary inputs (37% of total sedimenting carbon). In contrast, the benthic compartment was autotrophic, with the excess net benthic community production balancing the deficit in pelagic community production, leading to metabolic equilibrium at the station studied. Sedimentary inputs of nitrogen, phosphorus and silicon exceeded the benthic release, indicating that the benthic compartment acted as a sink for nutrients, consistent with its autotrophic nature. Carbon inputs to the benthic compartment also exceeded requirements, due to the allochthonous subsidies to the system, so that the benthic compartment stored or exported organic carbon. An erratum to this article can be found at .  相似文献   

12.
Bioavailability of different phosphorus forms in freshwater systems   总被引:26,自引:9,他引:17  
The recent literature on the bioavailability of different forms of P in freshwater systems is reviewed. Bioavailable P is defined as the sum of immediately available P and the P that can be transformed into an available form by naturally occurring processes. Methods used to estimate the bioavailable P pool, which vary between studies largely depending on the time perspective applied, are critically evaluated. Most studies on particulate P aim to determine the potentially available P pool. Potential bioavailability of particulate P is normally analysed in bioassays with algal yield determinations and the available P fraction is characterized from interpretations of results of sequential chemical extractions. NaOH-extractable P is in most studies the most algal-available P fraction. For soil samples and tributary water particulate matter, NaOH-P has often been found to be equal to algal extractable P. In other studies depletions of NaOH-P have accounted for the algal P uptake, but only a minor proportion of the fraction has been utilized. Organic P in lake water particulate matter and bed sediments of eutrophic lakes can also be algal-available to a significant extent.Studies on the bioavailability of dissolved P have often been concerned with immediate availability, or the minimum amount of available P. Such studies need other types of experimental design and normally assays with radiotracers are used. Immediately available P is frequently found to be less than P chemically assessed as dissolved reactive P (DRP) at low (< 10 µg DRP·l-1) concentrations. However, immediate availability may also approach or exceed DRP concentrations, especially at higher concentrations. Potential bioavailability, assayed as for particulate P, may generally render higher bioavailability than P assayed as immediately available. Large fractions of dissolved P remain unutilized and are primarily found in the high molecular weight fraction of dissolved P.  相似文献   

13.
The concentration of major elements (Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn and P), particulate phosphorus forms (NH4Cl-RP, BD-RP, NaOH-RP, HCl-RP and NaOH(85)-RP) and carbon content were determined in six size fractions (<8, 8–12, 12–19, 19–31, 31–42 and 42–<60 µm) of sediment collected at gauging stations located in two Lake Erie tributaries (Big Creek and Big Otter Creek). Concentrations of major elements and phosphorus forms were remarkably similar in sediment size fractions from both rivers. Nonapatite inorganic P (NAIP) and organic P (OP) concentrations increased with decreasing grain size while apatite inorganic P (AIP) content decreased with decreasing grain size. Results of phosphorus fractionation studies were combined with historical (particle size) and hydrometric data to simulate the export of particle P on tributary sediment < 63 µm. AIP represents 67 and 70% of the calculated particulate P mass while NAIP accounts for 26 and 23% of sediment-bound P transported in Big Otter Creek and Big Creek, respectively. The < 8 µm size fraction of tributary sediment is the most significant for the potential release of bioavailable P into the water column.  相似文献   

14.
Soluble and particulate spherule antigens fixed complement in tests with anti—C. immitis sera. However, the soluble antigen proved more active than the particulate one. Cross reactions were noted between the spherule antigens and anti—H. capsulatum and anti—B. dermatitidis sera. Following enzymatic treatment of the particulate preparation a soluble antigen was obtained which formed two bands with anti—C. immitis serum and one band with anti-H. capsulatum serum in an agar gel double diffusion test.  相似文献   

15.
Hypolimnetic oxygen content in lentic ecosystems has traditionally been modeled as a function of variables measured at the epilimnion, or that are supposed to drive epilimnetic processes, like total phosphorus load. However, in man-made reservoirs the river inflow can plunge into deep layers, directly linking the hypolimnion with the surrounding watershed. In these circumstances, organic matter carried by the river can influence the hypolimnetic oxygen content without important intervention of epilimnetic processes. Taking long-term data from two reservoirs in Spain, we applied an empirical regression approach to show that the dissolved organic matter carried by the river is the main driver shaping the hypolimnetic oxygen content. By contrast, typical variables commonly included in the modeling of the oxygen content in the hypolimnion (nutrient concentrations, chlorophyll a, and dissolved organic carbon measured in the water column) did not show any significant correlation. Interpretations from this regression approach were supported by a comparison between the monthly oxygen consumption in the hypolimnion and the monthly dissolved organic carbon load from the river inflow. We also revisited the prediction of the year-to-year variability of the Nürnberg’s anoxic factor in four reservoirs from Spain and the USA, explicitly including the allochthonous sources in the equations. These sources were significant predictors of the anoxic factor, especially in those systems subject to relatively high human impact. Thus, effects of allochthonous dissolved organic carbon should always be considered in empirical modeling and management of reservoir hypolimnetic processes related to oxygen content (for example, anoxia, nutrient internal loading, or phosphorus cycle resilience).  相似文献   

16.
Eckert  Werner  Didenko  Julia  Uri  Efrat  Eldar  Dganit 《Hydrobiologia》2003,494(1-3):223-229
Over a period of three years, the flux of particulate phosphorus to the sediment–water interface of Lake Kinneret was monitored by using seston traps deployed near the bottom of both accumulation and resuspension zones. The trap material was subjected to sequential phosphorus extraction. The obtained data set was compared to the phosphorus distribution in the surface layer of bottom sediments. Due to the sequence of drought years less allochtoneous phosphorous is reaching the lake resulting in a continuous decline of total particulate phosphorus (TPP) in the upper sediment layer. The observed decline in sedimentary TPP in spite of increased TPP sedimentation can be seen as a dilution effect due to the sedimentation of material with a relatively lower P content. The change in sedimentation can be seen as the result of increased resuspension at low lake levels. With sedimentary P in the littoral zone being unaffected by the drop in the external P load, the changes observed in the profundal zone appear to be driven by internal wave activity.  相似文献   

17.
This study describes the effects of the American red swamp crayfish, Procambarus clarkii Girard, on water quality and sediment characteristics in the Spanish floodplain wetland, Las Tablas de Daimiel National Park. Our short term enclosure study during a summer drawdown revealed that crayfish acted as a nutrient pump that transformed and translocated sediment bound nutrients to the water column. Water quality impoverishment was mainly due to the increase of dissolved inorganic nutrients (soluble reactive phosphorus and ammonia), and a significant increase of total suspended solids occurred likely as a result of crayfish associated bioturbation. At the same time, crayfish reduced the content of organic matter in the sediment and we observed a slight increase of total sediment phosphorus and nitrogen content as a result of crayfish benthic activity. P. clarkii effects, in terms of internal nutrient loading (229.91 mg TP m–2 d–1), were shown to be important on a local scale, indicating the significance of internal nutrient supply to water column primary producers particularly under low external supply (summer). Extrapolations to the whole ecosystem, however, revealed a negligible crayfish contribution (0.06%) to total internal nutrient loading (0.035 mg TP m–2 d–1). Hence, crayfish spatial heterogeneity patterns are important in global and local matter fluxes and nutrient cycles in wetlands.  相似文献   

18.
19.
Lake Okaro is a small, warm monomictic lake in central North Island, New Zealand, which progressed from oligotrophic to eutrophic through the 1960s. Trends in phosphorus (P) concentrations in the lake are linked to multiple restoration efforts over a 5-year period (2003–2008). The restoration procedures include a 2.3 ha constructed wetland established in February 2006 and riparian margin protection to reduce external loading, as well as an Alum application in December 2003 and sediment capping using modified zeolite in September 2008 to reduce internal loading. The annual average total phosphorus (TP) concentration in the lake decreased by 41% from 2004–2005 to 2007–2008. Two predictive models based on external P loading data generally underestimated the measured TP concentrations in the water column due to internal P loading. The relatively rapid response of TP concentrations after reduction of the internal loading using modified zeolite suggests that this technique can effect a rapid decrease in lake water TP concentrations though the trophic state of Lake Okaro showed high resilience to the reduced P loading. It is concluded that the combined effect of all restoration procedures resulted in a relatively rapid decrease in TP concentrations in Lake Okaro, which may be prolonged by continued external load reduction.  相似文献   

20.
van Eck  G. T. M. 《Hydrobiologia》1982,91(1):665-681
The composition and the different forms of P, in an annual average sample of particulate matter, have been determined to define the nature of the very high concentration of particulate P in the inflowing water of the Hollands Diep/ Haringvliet (The Netherlands), and to assess its potential to stimulate the growth of aquatic organisms. Three phosphorus fractionation schemes and five other extraction procedures have been applied. Seventy per cent of the total phosphorus content is operationally defined as Fe- and Al-bound P but, probably, only a discreet Fe-phosphate is present, with an atomic ratio Fe/P = 1.5. About 50% of total P is present as a colloidal form (<0.45 μm). The results indicate that Murphy & Riley's procedure for orthophosphate determination causes some hydrolysis of labile organic phosphorus compounds. A fractionation scheme, to determine the different forms of P in particulate matter, is proposed. The concentration of potentially algal-available particulate P, which varies between 25 and 50 μg P 1, has probably no effect on water quality because the concentration of dissolved orthophosphate (250 μg P 1−1) is much higher. The huge amounts of Fe-bound P stored in the sediments, however, may retard the improvement of water quality in the future when reduction of the phosphorus loading has been accomplished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号