首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates.  相似文献   

2.
Cannabinoid CB(1) receptor agonists exhibit potent analgesic effects in rodents and humans, but their clinical utility as analgesic drugs is often limited by centrally mediated side effects. We report herein the preparation of N-methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of hCB(1)/hCB(2) dual agonists with attractive physicochemical properties. More specifically, (R)-N,9-dimethyl-N-(4-(methylamino)-4-oxobutyl)-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamide, displayed an extremely low level of CNS penetration (Rat Cbr/Cplasma=0.005 or 0.5%) and was devoid of CNS side effects during pharmaco-dynamic testing.  相似文献   

3.
The pharmacology of G protein-coupled receptors is widely accepted to depend on the G protein subunit to which the agonist-stimulated receptor couples. In order to investigate whether CB(1) agonist-mediated signal transduction via an engineered G(alpha 16) system is different than that of the G(i/o) coupling normally preferred by the CB(1) receptor, we transfected the human recombinant CB(1) receptor (hCB(1)) or a fusion protein comprising the hCB(1) receptor and G(alpha 16) (hCB(1)-G(alpha 16)) into HEK293 cells. From competition binding studies, the rank order of ligand affinities at the hCB(1)-G(alpha 16) fusion protein was found to be similar to that for hCB(1): HU 210 > CP 55,940 > or = SR 141716A > WIN 55212-2 > anandamide > JWH 015. Agonists increased [(35)S]GTP gamma S binding or inhibited forskolin-stimulated cAMP, presumably by coupling to G(i/o), in cells expressing hCB(1) but not hCB(1)-G(alpha 16). However, an analogous rank order of potencies was observed for these agonists in their ability to evoke increases in intracellular calcium concentration in cells expressing hCB(1)-G(alpha 16) but not hCB(1). These data demonstrate that ligand affinities for the hCB(1) receptor are not affected by fusion to the G(alpha 16) subunit. Furthermore, there is essentially no difference in the function of the hCB(1) receptor when coupled to G(i/o) or G (alpha 16).  相似文献   

4.
Cannabinoid receptor 2 (CB2) plays an important role in human physiology and the pathophysiology of different diseases, including neuroinflammation, neurodegeneration, and cancer. Several classes of CB2 receptor ligands, including 2-oxoquinoline derivatives, have been previously reported. We report the synthesis and results of in vitro receptor binding of a focused library of new fluorinated 2-oxoquinoline CB2 ligands. Twelve compounds, 13-1618, 19, 21-24, 27, and 28 were synthesized in good yields in multiple steps. Human U87 glioma cells expressing either hCB1 (control) or hCB2 were generated via lentiviral transduction. In vitro competitive binding assay was performed using [(3)H]CP-55,940 in U87hCB1 and U87hCB2 cells. Inhibition constant (K(i)) values of compounds 13-16, 18, 19, 21-24, 27, and 28 for CB2 were >10,000, 2.8, 5.0, 2.4, 22, 0.8, 1.4, >10,000, 486, 58, 620, and 2400 nM, respectively, and those for CB1 were >10,000 nM. Preliminary in vitro results suggest that six of these compounds may be useful for therapy of neuropathic pain, neuroinflammatory diseases and immune disorders. In addition, compound 19, with its subnanomolar K(i) value, could be radiolabeled with (18)F and explored for PET imaging of CB2 expression.  相似文献   

5.
Studies to characterize the endogenous expression and pharmacology of peripheral human cannabinoid receptor (hCB2) have been hampered by the dearth of authentic anti-hCB2 antibodies and the lack of radioligands with CB2 selectivity. We recently described a novel CB2 inverse agonist, N-[1(S)-[4-[[4-methoxy-2-[(4methoxyphenyl)sulfonyl] phenyl]sulfonyl] phenyl]ethyl]methane-sulfonamide (Sch225336), that binds hCB2 with high affinity and excellent selectivity versus hCB1. The precursor primary amine of Sch225336 was prepared and reacted directly with [(35)S]mesyl chloride (synthesized from commercially obtained [(35)S]methane sulfonic acid) to generate [(35)S]Sch225336. [(35)S]Sch225336 has high specific activity (>1,400 Ci/mmol) and affinity for hCB2 (65 pm). Using [(35)S]Sch225336, we assayed hemopoietic cells and cell lines to quantitate the expression and pharmacology of hCB2. Lastly, we used [(35)S]Sch225336 for detailed autoradiographic analysis of CB2 in lymphoid tissues. Based on these data, we conclude that [(35)S]Sch225336 represents a unique radioligand for the study of CB2 endogenously expressed in blood cells and tissues.  相似文献   

6.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of pentacycle derivatives. Five of the new compounds which displayed high in vitro rCB1 binding affinities were assayed for binding to hCB2 receptor. Noticeably, 2-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) demonstrated good binding affinity and decent selectivity for rCB1 receptor (IC50 = 1.72 nM, hCB2/rCB1 = 142).  相似文献   

7.
Ten haedoxan analogs with the bond split between 2C and 3C of the 6-methoxy-2-methoxymethyl-3-(3,4-methylenedioxy)phenyl-1,4-benzodioxan-7-yl group of haedoxans were synthesized, and their insecticidal activity was assessed on the housefly. The inactivity of an analog having a 2-methoxy-5-(2-methoxyethoxy)-4-(3,4-methylenedioxybenzyloxy)phenyI instead of the 1,4-benzodioxan-7-yl group made it evident that the benzodioxane framework is essential for the activity of haedoxans.  相似文献   

8.
Analogs of glycerol-3-phosphate were tested as substrates or inhibitors of the glycerol-3-phosphate acyltransferases of mitochondria and microsomes. (rac)-3,4-Dihydroxybutyl-1-phosphonate, (rac)-glyceraldehyde 3-phosphate, (rac)-3-hydroxy-4-oxobutyl-1-phosphonate, (1S,3S)-1,3,4-trihydroxybutyl-1-phosphonate, and (1R,3S)-1,3,4 trihydroxybutyl-1-phosphonate were competitive inhibitors of both mitochondrial and microsomal sn-glycerol-3-phosphate acyltransferase activity. An isosteric analog of dihydroxyacetone phosphate, 4-hydroxy-3-oxobutyl-1-phosphonate, was a much stronger competitive inhibitor of the microsomal than the mitochondrial enzyme. Phenethyl alcohol was a noncompetitive inhibitor of both the microsomal and the mitochondrial acyltransferases. The product of the mitochondrial acyltransferase reaction with (rac)-3,4-dihydroxybutyl-1- phosphonate was almost exclusively (rac)-4-palmitoyloxy-3-hydroxybutyl-1-phosphonate. The microsomal acylation reaction generated both the monoacyl product and (S)-3,4-dipalmitoyloxybutyl-1-phosphonate. The apparent Km for (S)-3,4-dihydroxybutyl-1-phosphonate was 2.50 and 1.38 mM for the mitochondrial and microsomal enzymes, respectively.  相似文献   

9.
Ligand-based virtual screening led to the discovery of a new class of potent inverse agonists of the human cannabinoid receptor 1, hCB(1), which are selective versus hCB(2). These CB(1) ligands present intriguing departures from a classical CB(1) antagonist pharmacophore. Elements of SAR are discussed in this context.  相似文献   

10.
The hepatic alpha 1-adrenergic receptor mediates a variety of hepatic functions including respiration, glycogenolysis, gluconeogenesis, and growth. We have utilized a rat primary hepatocyte culture system to show that the alpha 1-adrenergic receptor can be activated in a stereoselective manner by a series of phenethylamines and catecholimidazolines resulting in the stimulation of DNA synthesis as determined by [3H]thymidine incorporation. The phenethylamines adhered to the Easson-Stedman hypothesis with a rank order of potency of (-)-(R)-norepinephrine (NE) greater than (+)-(S)-NE greater than the desoxy analog dopamine (DA) for the stimulation of DNA synthesis. However, the 2-substituted catecholimidazolines did not follow this trend and demonstrated an order of potency of the desoxy analog 3,4-dihydroxybenzyl imidazoline (DHT) greater than or equal to (-)-(R)-2-(3,4,alpha-trihydroxybenzyl)imidazoline (TBI) greater than (+)-(S)-TBI. 4-Substituted catecholimidazolines were less potent as inducers of DNA synthesis than the corresponding 2-substituted analogs with an order of potency of (+)-(R)-4-(3,4-dihydroxybenzyl)imidazoline (DBI) greater than (+,-)-(R,S)-DBI greater than (-)-(S)-DBI. When the beta-hydroxyl moiety of NE is replaced with an amino group as in 3,4-dihydroxyphenylethylenediamine, the isomers are less active than the beta-hydroxylated analogs and also demonstrate no stereoselectivity for the stimulation of DNA synthesis. These results demonstrate that the hepatic alpha 1-adrenergic receptor can recognize various isomeric forms of these compounds and that hepatocellular growth can be modulated in a stereoselective manner by phenethylamines and imidazolines.  相似文献   

11.
Michael addition of 1,2:3,4-di-O-isopropylidene-6-thio-alpha-D-galactose (2) to 2-propyl 6-O-acetyl-3,4-dideoxy-alpha-D-glycero-hex-3-enopyranosid-2-ulose (1) afforded, as the major diastereoisomer, 2-propyl 6-O-acetyl-3-deoxy-4-S-(6-deoxy-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranos-6-yl)-4-thio-alpha-D-threo-hexopyranosid-2-ulose (3, 91% yield). Reduction of the carbonyl group of 3, followed by O-deacetylation gave the two epimers 7 (alpha-D-lyxo) and 8 (alpha-D-xylo) in a 1:2 ratio. On removal of the protecting groups of 8 by acid hydrolysis, formation of an 1,6-anhydro bridge was observed in the 3-deoxy-4-thiohexopyranose unit (10). The free non-glycosidic thioether-linked disaccharide 3-deoxy-4-S-(6-deoxy-alpha,beta-D-galactopyranos-6-yl)-4-thio-alpha,beta-D-xylo-hexopyranose (11) was obtained by acetolysis of 10 followed by O-deacetylation. A similar sequence starting from the enone 1 and methyl 2,3,4-tri-O-benzoyl-6-thio-alpha-D-glucopyranoside (12) led successfully to 2-propyl 3-deoxy-4-S-(methyl 6-deoxy-alpha-D-glucopyranos-6-yl)-4-thio-alpha-D-lyxo-hexopyranoside (17) and its alpha-D-xylo analog (19, major product). In this synthetic route, orthogonal sets of protecting groups were employed to preserve the configuration of both reducing ends and to avoid the formation of the 1,6-anhydro ring.  相似文献   

12.
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.  相似文献   

13.
Cannabinoid receptors are G-protein-coupled receptors comprised of seven transmembrane helices. We hypothesized that the extended helix of the receptor interacts differently with POPC bilayers due to the differing distribution of charged amino acid residues. To test this, hCB1(T377-E416) and hCB2(K278-H316) peptides were studied with 31P and 2H solid-state NMR spectroscopy by incorporating them into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine bilayers. Lipid affinities of the 40- and 39-residue peptides were analyzed on the basis of 31P and 2H spectral line shapes, order parameters, and T1 relaxation measurements of the POPC bilayers. Lipid headgroup perturbations were noticed in the 31P NMR spectra in the lipid/peptide mixtures when compared with the pure lipids. 2H order parameters were calculated from the quadrupolar splitting of the de-Paked 2H NMR spectra. At the top of the acyl chain, pure lipids had an average S(CD) approximately = 0.20, whereas S(CD) approximately = 0.16 and S(CD) approximately = 0.18 were found in the presence of hCB1(T377-E416) and hCB2(K278-H316), respectively. S(CD) values decreased in the central part of the acyl chains when compared to the pure POPC lipids, indicating a change in the dynamic properties of the lipid membrane in the presence of the cannabinoid peptides. R(1Z) vs S2(CD) plots exhibited a linear dependency with and without the peptides, with an increase in slope upon addition of the peptides to the POPC, indicating that the dynamics of the lipid bilayer is dominated by fast axially symmetric motion. This study provides insights into the interaction of cannabinoid peptides with the membrane bilayer by investigating the headgroup and acyl chain dynamics.  相似文献   

14.
Zhou FY  She J  Wang YG 《Carbohydrate research》2006,341(15):2469-2477
A benzyl-protected analog of the phenylpropanoid glycoside arenarioside, (4-benzyloxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1-->3)-4-O-[(E)-3,4-di-O-benzyl-caffeoyl]-[beta-D-xylopyranosyl-(1-->6)]-beta-D-glucopyranoside (22), was synthesized through two different routes from D-glucose. This is the first approach on the synthesis of a trisaccharide phenylpropanoid glycoside, although the benzyl-protecting group in the backbone of the arenarioside analog could not be removed by conventional debenzylation procedures.  相似文献   

15.
The lack of experimental characterization of the structures and ligand-binding motifs of therapeutic G-protein coupled receptors (GPCRs) hampers rational drug discovery. The human cannabinoid receptor 2 (hCB2R) is a class-A GPCR and promising therapeutic target for small-molecule cannabinergic agonists as medicines. Prior mutational and modeling data constitute provisional evidence that AM-841, a high-affinity classical cannabinoid, interacts with cysteine C6.47(257) in hCB2R transmembrane helix 6 (TMH6) to afford improved hCB2R selectivity and unprecedented agonist potency. We now apply bottom-up mass spectrometry (MS)-based proteomics to define directly the hCB2R-AM-841 interaction at the amino-acid level. Recombinant hCB2R, overexpressed as an N-terminal FLAG-tagged/C-terminal 6His-tagged protein (FLAG-hCB2R-6His) with a baculovirus system, was solubilized and purified by immunochromatography as functional receptor. A multiplex multiple reaction monitoring (MRM)-MS method was developed that allowed us to observe unambiguously all seven discrete TMH peptides in the tryptic digest of purified FLAG-hCB2R-6His and demonstrate that AM-841 modifies hCB2R TMH6 exclusively. High-resolution mass spectra of the TMH6 tryptic peptide obtained by Q-TOF MS/MS analysis demonstrated that AM-841 covalently and selectively modifies hCB2R at TMH6 cysteine C6.47(257). These data demonstrate how integration of MS-based proteomics into a ligand-assisted protein structure (LAPS) experimental paradigm can offer guidance to structure-enabled GPCR agonist design.  相似文献   

16.
The influence of the 6-methoxy-2-methoxymethyl-3-(3,4-methylenedioxyphenyl)-1,4-benzodioxan-7-yl group on the insecticidal activity of haedoxans was studied by synthesizing an analog without the (methoxymethyl)methinoxy moiety of the benzodioxanyl group to test for its activity on the housefly. The inactivity of the analog and its satellite compounds implies that the (methoxymethyl)methinoxy moiety is essential for the biological activity of haedoxans.  相似文献   

17.
The haedoxan analog, (±)-2-(2,6-dimethoxyphenoxy)-1-hydroxy-6-(6-methoxy-l,4-benzodioxan-7-yl)-3,7-dioxabicyclo[3.3.0]octane, and its congeners with 2-alkoxymethyl, 2-hydroxymethyl, 2-chloromethyl and 3-(3,4-methylenedioxyphenyl) substituents on the 1,4-benzodioxanyl group were synthesized from 6-methoxy-l,4-benzodioxan-7-carbaldehyde and its (±)-2- and 3-substituted derivatives, respectively. Some analogs were considerably insecticidal, although much less active than natural haedoxan A. The assay results suggest that 2,3-disubstitution on the 1,4-benzodioxanyl group was necessary to intensify the insecticidal activity.  相似文献   

18.
Antagonists of peripheral type 1 cannabinoid receptors (CB1) may have utility in the treatment of obesity, liver disease, metabolic syndrome and dyslipidemias. We have targeted analogues of the purine inverse agonist otenabant (1) for this purpose. The non-tissue selective CB1 antagonist rimonabant (2) was approved as a weight-loss agent in Europe but produced centrally mediated adverse effects in some patients including dysphoria and suicidal ideation leading to its withdrawal. Efforts are now underway to produce compounds with limited brain exposure. While many structure-activity relationship (SAR) studies of 2 have been reported, along with peripheralized compounds, 1 remains relatively less studied. In this report, we pursued analogues of 1 in which the 4-aminopiperidine group was switched to piperazine group to enable a better understanding of SAR to eventually produce compounds with limited brain penetration. To access a binding pocket and modulate physical properties, the piperazine was functionalized with alkyl, heteroalkyl, aryl and heteroaryl groups using a variety of connectors, including amides, sulfonamides, carbamates and ureas. These studies resulted in compounds that are potent antagonists of hCB1 with high selectivity for hCB1 over hCB2. The SAR obtained led to the discovery of 65 (Ki?=?4?nM, >1,000-fold selective for hCB1 over hCB2), an orally bioavailable aryl urea with reduced brain penetration, and provides direction for discovering peripherally restricted compounds with good in vitro and in vivo properties.  相似文献   

19.
The effects of 3,4-dihydroxybutyl-1-phosphonate, a four-carbon analog of sn-glycerol 3-phosphate, on the biosynthesis of the glyceryl moiety in murein lipoprotein of Escherichia coli were studied. The compound at a concentration of 55 microM strong inhibits in the incorporation of [2-3H]glycerol radioactivity into lipoprotein by virtue of its inhibition of the synthesis of phosphatidylglycerol. On the other hand, the incorporation of prelabeled [2-3H]glycerol radioactivity into lipoprotein was only partially inhbited by 3,4-dihydroxybutyl-1-phosphonate even at a much higher concentration (1 mM). These data were consistent with the postulated pathway for the biosynthesis of the lipid moiety in lipoportein: cysteine-lipoprotein + phosphatidylglycerol leads to glycerylcystein-lipoprotein + phosphatidic acid.  相似文献   

20.
3,4-Pentadienoyl-CoA, an allenic substrate analog, is a potent inhibitor of the flavoprotein pig-kidney general acyl-CoA dehydrogenase. The analog reacts very rapidly (k = 2.4 X 10(3) min-1) with the native oxidized enzyme to form a covalent flavin adduct probably involving the isoalloxazine position N-5. This species is inactive, but activity may be regained by two pathways. The allenic thioester can be displaced (k = 0.3 min-1) by a large excess of octanoyl-CoA substrate upon reversal of covalent adduct formation. Alternatively, the enzyme inactivator adduct slowly decomposes (t1/2 = 75 min) to form the strongly thermodynamically favoured 2,4-diene and catalytically active, oxidized enzyme. During this latter process 15-20% of the activity is irreversibly lost probably due to covalent modification of the protein. These data suggest that 3,4-pentadienoyl-CoA should be considered a suicide substrate of the acyl-CoA dehydrogenase. The mechanism of the reactions, and in particular the 3,4----2,4 tautomerization, are consistent with a catalytic sequence initiated by abstraction of an alpha-hydrogen as a proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号