首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial sealers exterminated the original fur seal population at Macquarie Island in the early 1800s. The first breeding record since the sealing era was not reported until March 1955. Three species of fur seal now occur at Macquarie Island, the Antarctic (Arctocephalus gazella), subantarctic (A. tropicalis) and New Zealand (A. forsteri) fur seal. Census data from 54 breeding seasons in the period 1954–2007 were used to estimate population status and growth for each species. Between the 1950s and 1970s, annual increases in pup production for the species aggregate were low. Between 1986 and 2007, pup production of Antarctic fur seals increased by about 8.8% per year and subantarctic fur seals by 6.8% per year. The New Zealand fur seal, although the most numerous fur seal species on Macquarie Island, has yet to establish a breeding population, due to the absence of reproductively mature females. Hybridisation among species is significant, but appears to be declining. The slow establishment and growth of fur seal populations on Macquarie Island appears to have been affected by its distance from major population centres and hence low immigration rates, asynchronous colonisation times of males and females of each species, and extensive hybridisation.  相似文献   

2.
California sea lions (Zalophus californianus) and northern fur seals (Callorhinus ursinus) are each believed to host distinct hookworm species (Uncinaria spp.). However, a recent morphometric analysis suggested that a single species parasitizes multiple pinniped hosts, and that the observed differences are host-induced. To explore the systematics of these hookworms and test these competing hypotheses, we obtained nucleotide sequences of nuclear ribosomal DNA (D2/D3 28S, D18/D19 28S, and internal transcribed spacer [ITS] regions) from 20 individual hookworms parasitizing California sea lion and northern fur seal pups where their breeding grounds are sympatric. Five individuals from an allopatric population of California sea lions were also sampled for ITS-1 and D18/D19 28S sequences. The 28S D2/D3 sequences showed no diagnostic differences among hookworms sampled from individual sea lions and fur seals, whereas the 28S D18/D19 sequences had one derived (apomorphic) character demarcating hookworms from northern fur seals. ITS sequences were variable for 7 characters, with 4 derived (apomorphic) states in ITS-1 demarcating hookworms from California sea lions. Multivariate analysis of morphometric data also revealed significant differences between nematodes representing these 2 host-associated lineages. These results indicate that these hookworms represent 2 species that are not distributed indiscriminately between these host species, but instead exhibit host fidelity, evolving independently with each respective host species. This evolutionary approach to analyzing sequence data for species delimitation is contrasted with similarity-based methods that have been applied to numerous diagnostic studies of nematode parasites.  相似文献   

3.
Information on health parameters, such as antibody prevalences and serum chemistry that can reveal exposure to pathogens, disease, and abnormal physiologic conditions, is scarce for Antarctic seal species. Serum samples from Antarctic fur seals (Arctocephalus gazella, n=88) from Bouvet?ya (2000-2001 and 2001-2002), and from Weddell seals (Leptonychotes weddellii, n=20), Ross seals (Ommatophoca rossii, n=20), and crabeater seals (Lobodon carcinophagus, n=9) from the pack-ice off Queen Maud Land, Antarctica (2001) were analyzed for enzyme activity, and concentrations of protein, metabolites, minerals, and cortisol. Adult Antarctic fur seal males had elevated levels of total protein (range 64-99 g/l) compared to adult females and pups (range 52-79 g/l). Antarctic fur seals had higher enzyme activities of creatine kinase, lactate dehydrogenase, and amylase, compared to Weddell, Ross, and crabeater seals. Antibodies against Brucella spp. were detected in Weddell seals (37%), Ross seals (5%), and crabeater seals (11%), but not in Antarctic fur seals. Antibodies against phocine herpesvirus 1 were detected in all species examined (Antarctic fur seals, 58%; Weddell seals, 100%; Ross seals, 15%; and crabeater seals, 44%). No antibodies against Trichinella spp., Toxoplasma, or phocine distemper virus (PDV) were detected (Antarctic fur seals were not tested for PDV antibodies). Antarctic seals are challenged by reduced sea ice and increasing temperatures due to climate change, and increased anthropogenic activity can introduce new pathogens to these vulnerable ecosystems and represent a threat for these animals. Our data provide a baseline for future monitoring of health parameters of these Antarctic seal species, for tracking the impact of environmental, climatic, and anthropogenic changes in Antarctica over time.  相似文献   

4.
Sea lion and seal populations in Alaskan waters underwent various degrees of decline during the latter half of the twentieth century and the cause(s) for the declines remain uncertain. The stable carbon (13C/12C) and nitrogen (15N/14N) isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the Bering Sea and Gulf of Alaska were measured for the period 1951-1997 to test the hypothesis that a change in trophic level may have occurred during this interval and contributed to the population declines. A significant change in '15N in pinniped tissues over time would imply a marked change in trophic level. No significant change in bone collagen '15N was found for any of the three species during the past 47 years in either the Bering Sea or the Gulf of Alaska. However, the 15N in the Steller sea lion collagen was significantly higher than both northern fur seals and harbor seals. A significant decline in '13C (almost 2 ‰ over the 47 years) was evident in Steller sea lions, while a declining trend, though not significant, was evident in harbor seals and northern fur seals. Changes in foraging location, in combination with a trophic shift, may offer one possible explanation. Nevertheless, a decrease in '13C over time with no accompanying change in '15N suggests an environmental change affecting the base of the foodweb rather than a trophic level change due to prey switching. A decline in the seasonal primary production in the region, possibly resulting from decreased phytoplankton growth rates, would exhibit itself as a decline in '13C. Declining production could be an indication of a reduced carrying capacity in the North Pacific Ocean. Sufficient quantities of optimal prey species may have fallen below threshold sustaining densities for these pinnipeds, particularly for yearlings and subadults who have not yet developed adequate foraging skills.  相似文献   

5.
When hunting at sea, pinnipeds should adapt their foraging behaviors to suit the prey they are targeting. We performed captive feeding trials with two species of otariid seal, Australian fur seals (Arctocephalus pusillus doriferus) and subantarctic fur seals (Arctocephalus tropicalis). This allowed us to record detailed observations of how their foraging behaviors vary when presented with prey items that cover the full range of body shapes and sizes encountered in the wild. Small prey were captured using suction alone, while larger prey items were caught in the teeth using raptorial biting. Small fish and long skinny prey items could then be swallowed whole or processed by shaking, while all prey items with body depths greater than 7.5 cm were processed by shaking at the water's surface. This matched opportunistic observations of feeding in wild Australian fur seals. Use of “shake feeding” as the main prey processing tactic also matches predictions that this method would be one of the only tactics available to aquatic tetrapods that are unable to secure prey using their forelimbs.  相似文献   

6.
7.
Animal‐borne instruments have become a standard tool for collecting important data from marine mammals. However, few studies have examined whether placement of these data loggers affects the behavior and energetics of individual animals, potentially leading to biasing data. We measured the effect of two types of relatively small data loggers (<1% of animals’ mass and front profile) on the swimming speeds and energy expenditure of four female northern fur seals (Callorhinus ursinus) while swimming at depth. Swim speeds and rates of oxygen consumption were measured as the trained fur seals repeatedly swam an underwater circuit, with or without the tags. We found the placement of either tested tag significantly affected both the behavior and energetics of the fur seals in our study. Diving metabolic rate increased an average of 8.1%–12.3% (depending on tag type) and swim speed decreased an average of 3.0%–6.0% when wearing the tags. The combined changes in velocities and metabolic rates resulted in a 12.0%–19.0% increase in the total energy required by the fur seals to swim a set distance. The demonstrated effects of tags on behavior and energy expenditure may bias data sets from wild animals and potentially incur longer‐term impacts on the studied animals.  相似文献   

8.
Ice is one of the most important drivers of population dynamics in polar organisms, influencing the locations, sizes, and connectivity of populations. Antarctic fur seals, Arctocephalus gazella, are particularly interesting in this regard, as they are concomitantly reliant on both ice‐associated prey and ice‐free coastal breeding areas. We reconstructed the history of this species through the Last Glacial Maximum (LGM) using genomic sequence data from seals across their range. Population size trends and divergence events were investigated using continuous‐time size estimation analysis and divergence time estimation models. The combined results indicated that a panmictic population present prior to the LGM split into two small refugial populations during peak ice extent. Following ice decline, the western refugial population founded colonies at the South Shetlands, South Georgia, and Bouvetøya, while the eastern refugial population founded the colony on Iles Kerguelen. Postglacial population divergence times closely match geological estimates of when these coastal breeding areas became ice free. Given the predictions regarding continued future warming in polar oceans, these responses of Antarctic fur seals to past climate variation suggest it may be worthwhile giving conservation consideration to potential future breeding locations, such as areas further south along the Antarctic Peninsula, in addition to present colony areas.  相似文献   

9.
We propose that effective community size can be defined on the basis of the web of indirect interactions experienced on average by each individual species. Indirect interaction chains are composed of links provided by direct interactions. We analyzed previously published data on 20 assemblages of species. Chain strengths were estimated by the weakest link and by the product of link strength. The average strength of the interaction chain decreased with increasing numbers of links with both models. Positive indirect interactions in chains with an even number of links offset negative direct interactions. We set the community size by the chain length where 95% of the indirect interactions are weaker than 10% of the mean of the absolute value of direct interaction strength. Using the multiplicative model, seven assemblages had a community size (web of interaction length) of three links, one of four links, and the remainder of communities were too small to set community size. The analysis suggests that effective communities of size are rarely investigated in ecological experiments.  相似文献   

10.
Year-round monitoring of five Antarctic pinnipeds was conducted in Admiralty Bay from 1988 up to 2000. Two breeding species: southern elephant sealsMirounga leonina (Linnaeus, 1758) and Weddell sealsLeptonychotes weddellii (Lesson, 1826), were present throughout the year. Three other species: crabeater seals Lobodon carcinophagus (Hobron and Jacquinot, 1842), leopard sealsHydrurga leptonyx (Blainville, 1820), and Antarctic fur sealsArctocephalus gazella (Peters, 1875) visited the area only for short periods. During this study, the abundance of elephant seals was stable, whereas those of Weddell and crabeater seals declined. Leopard seals numbers fluctuated irregularly. We detected a possible immigration from South Georgia: of a stable magnitude for elephant seals, and of variable magnitude, depending on food accessibility, for Antarctic fur seals. We found a strong recurrence of the spatial distributions of elephant, Weddell, and Antarctic fur seals in the 13 oases on the shore of Admiralty Bay. Annual distribution patterns were characteristic for each species. The innermost beaches were used predominantly by the animals during their annual fasts: the breeding and the moulting seasons.  相似文献   

11.
Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals'' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced.  相似文献   

12.
COMPARATIVE POPULATION DYNAMICS OF FUR SEALS   总被引:7,自引:0,他引:7  
The population sizes, trends, exploitation, and life history parameters for the ten fur seal species and subspecies are summarized. The largest population is that of Arctocephalus pusillus pusillus with approximately two million seals, and the smallest is A. townsendi with approximately 7,000 individuals. Most populations are legally protected, although controlled harvesting may occur. None of the fur seal populations is currently known to be decreasing. Data are presented for parameters related to the survival of pups, juveniles, adults, and territorial males, and to reproduction, including the age of attainment of territorial status, aggregation sizes, age of first parturition, pregnancy rates, sex ratios of young animals, and information on the birth seasons of the different species. Since pinnipeds are often of concern in fisheries management, their daily consumption rates are of importance, and consequently data on body masses are summarized and the paucity of data on consumption rates as a function of body mass noted. A simplified age-structured model is developed, and the results of this model are compared with results from more detailed models based on two published life tables for Callorhinus ursinus. This comparison shows that the use of the simplified age-structured model is justified to explore changes in population growth rate. However, the simplified model does show exaggerated age structure effects compared to the more detailed models. This model is used to compare the population dynamics of those species for which sufficient data are available. Areas in which limited, or no, data are available for the different fur seal species are highlighted.  相似文献   

13.
The diet of adult female northern fur seals ( Callorhinus ursinus ) is examined through the analysis of faecal material collected during the summer breeding season at three breeding locations in the Bering Sea: St. Paul Island (1988, 1990) and St. George Island (1988, 1990) of the Pribilof Islands Group (USA), and Medny Island (1990) of the Commander Islands Group (Russia). Prey consumption varies annually and accordingly with the physical and biological environment surrounding each island. Juvenile walleye pollock ( Theragra chalcogramma ) is the most common prey of northern fur seals from St. Paul Island; the island is surrounded by a broad neritic environment with widely separated frontal zones and is the greatest distance from the continental shelf-edge. Gonatid squid ( Gonatopsis borealis/Berryteuthis magister and Gonatus madokail Gonatus middendorffi ) were the most common prey of northern fur seals from Medny Island; the island is surrounded by a compressed neritic environment and is adjacent to the continental shelf-edge and the oceanic marine environment. A combination of walleye pollock and gonatid squid is consumed by northern fur seals from St. George Island; the island has a surrounding oceanographic environment intermediate between the other two islands.
Variability in predation on walleye pollock is consistent with fishery information concerning the relative abundance and availability of walleye pollock around St. George and St. Paul Islands. The abundance and availability of these prey resources during the summer breeding season are key factors which influence the health and growth of the northern fur seal populations in the Bering Sea.  相似文献   

14.
The analysis of prey overlap among Weddell, Antarctic fur and leopard seals was conducted using fecal samples collected at the Danco Coast, Antarctic Peninsula, in 1998 and 2000. The re-occurrence of prey species was moderate in samples collected in 1998, and low in 2000, and reflects resource partitioning among seal species. Prey species that mostly co-occurred in seals’ diet were the Antarctic krill Euphausia superba, bivalves, and the myctophids Gymnoscopelus nicholsi and Electrona antarctica. A dietary similarity index of prey overlap has been calculated and demonstrates evident fluctuations in pairwise comparisons between the seal species. The highest and lowest values of prey overlap were observed between Antarctic fur seals and leopard seals, and between Weddell seals and leopard seals, respectively. Prey overlap between Antarctic fur seals and Weddell seals was moderate in both seasons.  相似文献   

15.
Erythrocyte and blood platelet phospholipid compositions were studied in three elephant seals and two fur seals, two species of marine mammals living in the Subantarctic region feeding on preys rich in (n-3) polyunsaturated fatty acids. Results were compared with those reported for related species and humans. In erythrocytes, the phospholipid (PL) and cholesterol (CHOL) contents were lower in pinnipeds than in humans. Phosphatidylcholine (PC) levels were higher in elephant seals than in fur seals, with a reverse trend for phosphatidylethanolamine (PE) and phosphatidylserine (PS). Both species had lower SM/PC ratios and PE plasmalogen concentrations than human. Erythrocytes were richer in (n-3) fatty acids (FA) in pinnipeds than in humans. In platelets, the PL content was lower and the CHOL content higher in elephant seals than in humans or in other phocid seal species studied to date. The SM/PC ratio was much higher than in other seal species or in man. In both species, the proportion of PE plasmalogens was higher in platelets than in erythrocytes. PL were more saturated in elephant seals than in fur seals. These results suggest that the erythrocytes and platelets of wild marine mammals may prove useful models to study the influence of dietary lipids on the structure and hemostatic function of these cells.  相似文献   

16.
Satellite telemetry data are a key source of animal distribution information for marine ecosystem management and conservation activities. We used two decades of telemetry data from the East Antarctic sector of the Southern Ocean. Habitat utilization models for the spring/summer period were developed for six highly abundant, wide‐ranging meso‐ and top‐predator species: Adélie Pygoscelis adeliae and emperor Aptenodytes forsteri penguins, light‐mantled albatross Phoebetria palpebrata, Antarctic fur seals Arctocephalus gazella, southern elephant seals Mirounga leonina, and Weddell seals Leptonychotes weddellii. The regional predictions from these models were combined to identify areas utilized by multiple species, and therefore likely to be of particular ecological significance. These areas were distributed across the longitudinal breadth of the East Antarctic sector, and were characterized by proximity to breeding colonies, both on the Antarctic continent and on subantarctic islands to the north, and by sea‐ice dynamics, particularly locations of winter polynyas. These areas of important habitat were also congruent with many of the areas reported to be showing the strongest regional trends in sea ice seasonality. The results emphasize the importance of on‐shore and sea‐ice processes to Antarctic marine ecosystems. Our study provides ocean‐basin‐scale predictions of predator habitat utilization, an assessment of contemporary habitat use against which future changes can be assessed, and is of direct relevance to current conservation planning and spatial management efforts.  相似文献   

17.
Animals that establish new sites near the edge of the species' range may be vulnerable to disturbance as they are low in numbers and are not tied to the sites. Pinniped distributions world‐wide are changing as many species are recolonizing areas of their former ranges and establishing new colonies. Little research is available on the impact that vessel presence may pose on pinnipeds at such sites. This study documents responses of New Zealand fur seals to vessels in the Bay of Plenty, New Zealand, at a recently established breeding colony. Fur seal behavior at the breeding location was recorded in the presence of vessels. GLMM and GAM analyses revealed that fur seal responses varied with month, time of day, duration of vessel exposure, and the distance to the vessel. Age and sex of the seals, and the number of seals present also influenced fur seal response. Fur seals at this site became disturbed when vessels approached to the 10–20 m distance category, and a precautionary minimum approach distance of 50 m has been suggested. This research provides direction for monitoring and minimizing impacts of vessels on fur seals, especially where new sites are being colonized.  相似文献   

18.
Phylogenetic relationships within the family Otariidae were investigated using two regions of the mitochondrial genome. A 360-bp region of the cytochrome b gene was employed for the primary phylogenetic analysis, while a 356-bp segment of the control region was used to enhance resolution of the terminal nodes. Traditional classification of the family into the subfamilies Arctocephalinae (fur seals) and Otariinae (sea lions) is not supported, with the fur seal Callorhinus ursinus having a basal relationship relative to the rest of the family. This is consistent with the fossil record which suggests that this genus diverged from the line leading to the remaining fur seals and sea lions about 6 million years ago (mya). There is also little evidence to support or refute the monophyly of sea lions. Four sea lion clades and five fur seal clades were observed, but relationships among these clades are unclear. Similar genetic divergences between the sea lion clades (D(a) = 0.054-0.078), as well as between the major Arctocephalus fur seal clades (D(a) = 0.040-0.069) suggest that these groups underwent periods of rapid radiation at about the time they diverged from each other. Rapid radiations of this type make the resolution of relationships between the resulting species difficult and indicate the requirement for additional molecular data from both nuclear and mitochondrial genes. The phylogenetic relationships within the family and the genetic distances among some taxa highlight inconsistencies in the current taxonomic classification of the family.  相似文献   

19.
Population bottlenecks may lead to diminished genetic variability and correlative effects on fitness. The Guadalupe fur seal was nearly exterminated by commercial sealers during the late 18th and early 19th centuries. To determine the genetic consequences of this population bottleneck, we compared the variation at a 181 bp section of the mitochondrial DNA (mtDNA) control region from the bones of 26 prebottleneck fur seals versus variation in the extant population. We found 25 different mtDNA genotypes in the prebottleneck fur seals and only 7 genotypes among 32 extant fur seals, including only one of the ancient genotypes. These data demonstrate a substantial loss of genetic variability correlating with the recent population bottleneck. We also found from several genetic measures that the prehistoric population of Guadalupe fur seals was robust and that it had been increasing at some time during the late prehistoric period. Continued recovery of this species may, however, owe more to more immediate nongenetic factors, such as poaching and local availability of food resources during the breeding season and consequent effects on pup survival, than on the reduced genetic variability.  相似文献   

20.
We recorded EEG from both hemispheres and documented the state of the two eyes in two species of Cetaceans (one beluga and one bottlenose dolphin) and one species of Pinnipeds (two northern fur seals). In the dolphin and beluga we found that episodes of unihemispheric slow wave sleep (USWS) were associated with asymmetry in eye state. During USWS and asymmetrical SWS the eye contralateral to the sleeping hemisphere was mostly closed or in an intermediate state while the eye contralateral to the waking hemisphere was more often open or in an intermediate state. Bilateral eye opening indicated waking in about 80% cases and unilateral eye closure indicated USWS with an accuracy of about 75%. Bilateral eye closure was rare (< 2% of the observation time) and was not necessarily associated with high amplitude SWS. In fur seals, episodes of one eye briefly opening usually occurred in the beginning of sleep episodes and lasted several minutes. Those episodes were frequently associated with lower amplitude EEG slow waves in the contralateral brain hemisphere. During most of their sleep on land, fur seals had both eyes tightly closed. No EEG asymmetry was recorded at this time. Although eye state and EEG stage are correlated in the bottlenose dolphin, beluga and fur seals, short episodes of EEG synchrony (less then 1 min) occur contralateral to an open eye and waking (a more activated EEG) activity can be present contralateral to a closed eye. The available data suggest that two functions of USWS/EEG asymmetry during SWS in Cetaceans and fur seals are multisensory control of the environment and maintenance of motion and postures of sleep. The adaptive advantages of USWS throughout the evolution of Cetaceans and Pinnipeds from terrestrial mammals to present forms could include 1) the avoidance of predators and maintenance of contact with other animals of the same species; 2) continuance of regular breathing; 3) and effective thermoregulation in the water environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号