首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal and intra-thallus variations in the contents of C, N, proteins and amino acids, as well as in the storage carbohydrates mannitol and laminaran, were measured in the endemic Antarctic brown alga Ascoseira mirabilis between September and February and related to seasonal changes in dark respiration and photosynthesis. Carbon contents between 31 and 37% DW were relatively constant throughout these months and no variations were detected among thallus regions. Nitrogen contents, by contrast, were higher in September/October (3.1% DW) and decreased in January and February (1.8% DW). In general, the basal regions had the lower N contents. Proteins reached maximum values of 13% DW in November and February and were inversely correlated to photosynthesis (net Pmax). The amino acid content was also higher in October and November (maxima close to 10% DW), but low between December and February (close to 5% DW), probably related to a seasonal pattern of N allocation in the alga. The storage carbohydrates mannitol and laminaran exhibited inverse seasonal changes: low mannitol values close to 5% DW in September were coupled with high laminaran contents varying between 7 and 15% DW. The existence of high laminaran contents in the distal blade region during September and February suggests that this compound was effectively accumulated in this region. The low P/R ratios in spring and the existence of a significant relationship between mannitol content and seasonal photosynthetic activity in the basal region appear to support the hypothesis of a possible utilization of carbohydrates to power growth in A. mirabilis. Received: 7 November 1996 / Accepted: 28 August 1997  相似文献   

2.
In the Seno de Reloncaví, southern Chile, seasonal changes in dry weight (DW) and elemental composition (CHN) were studied in embryo (initial embryonic stage), newly hatched zoeae, and newly settled megalopae of a porcelain crab, Petrolisthes laevigatus. Samples were taken throughout the seasons of egg laying (March-December), hatching (August-February), and settlement (October–February). Values of DW and CHN per embryo or larva, respectively, were consistently minimum in the middle of each season and maximum near its beginning and end. Patterns of seasonal variation in early embryonic biomass may thus be carried over to larvae at hatching and, possibly, to the settlement stage. Such carry-over effects may be selectively advantageous, as zoeae released at the beginning or near the end of the hatching season face conditions of poor planktonic food availability in combination with low winter temperatures or decreasing temperatures at the end of summer (enforcing long development duration). Hence, an enhanced female energy allocation into egg production may subsequently translate to enhanced yolk reserves remaining at hatching, allowing for a larval development under unfavourable winter conditions. In summer, by contrast, plankton productivity and temperatures are generally high, allowing for fast larval growth and development. This coincides with minimal biomass and energy contents both at hatching and settlement. In conclusion, our data suggest that seasonal patterns in the biomass of early developmental stages of P. laevigatus may reflect phenotypic variability as an adaptive response to predictable variations in environmental conditions, allowing this species to reproduce in temperate regions with marked seasonality in water temperature and plankton productivity.  相似文献   

3.
Few studies have been conducted on the temporal dynamics of both amino acid (AA) and fatty acid (FA) profiles in marine bivalves. We investigated the seasonal variation of these compounds in the pod razor clam Ensis siliqua in relation to food availability, salinity, water temperature and reproductive cycle. AA content varied between 46.94 and 54.67 % dry weight (DW), and the AAs found in greater quantity were glutamic acid, glycine and aspartic acid. FA content varied between 34.02 and 87.94 mg g?1 DW and the FAs found in greater quantity were 16:0 and 22:6n-3. Seasonal trends were observed for AAs and FAs. FAs increased with gametogenesis and decreased with spawning while AA content increased throughout spawning. The effect of increasing temperature and high food availability during the spawning season masked the loss of AAs resulting from gamete release. Still, a comparatively greater increase in the contents of glutamic acid and leucine with spawning indicate their possible involvement in a post-spawning gonad recovery mechanism. A post-spawning decrease in 14:0, 16:0, 16:1n-7, 18:1n-7 and 18:1n-9 is indicative of the importance of these FAs in bivalve eggs. An increase in 18:3n-3, 18:4n-3, 20:1n-9 and 20:2n-6 during gametogenesis suggests their involvement in oocyte maturation. The FA 22:4n-6, while increasing with spawning, appears to play a role in post-spawning gonad recovery. Salinity did not have an effect on the AA composition. None of the environmental parameters measured had an effect on FA composition.  相似文献   

4.
Macrocystis is an important marine resource in Chile, with severe problems of over-exploitation. Our study describes genetic materials and techniques for a further improvement of laboratory-based mariculture. For a systematic hybridization program we have selected one pair (cultivar) of gametophytes with favorable somatic and reproductive characteristics from each of seven localities in southern Chile. Sporophytes from all 49 crosses were grown for 10 weeks to seedling size. We report here that sporophytes from sympatric parents (intra-cultivar matings) grow to different length, depending on the locality and, importantly, that sporophytes from several inter-cultivar crossings show superior growth, suggesting heterosis with symmetric or asymmetric reciprocity. The genetic materials and techniques described here, together with our newly developed standardized seedling production protocols now available, constitute a significant step towards domestication of Macrocystis in analogy to terrestrial agriculture.  相似文献   

5.
Spur-winged geese at Barberspan, an agricultural area in South Africa, had an average carcass composition of 64% water, 22% protein, 6% lipid, 6% minerals and 2% carbohydrate with an energy content of 21.6 kJ g-1 DW. There were significant changes during the year in protein and lipid levels; they were lowest during the annual flightless wing moult. Protein and lipid levels also declined during breeding but this event had less effect on body reserves than moulting. The relationships between various body measurements and mineral content of the carcass (as an estimate of skeletal weight) were examined.  相似文献   

6.
Twenty-five intertidal diatom species were isolated from the Solthörn tidal flat (Lower Saxony, southern North Sea) and grown in semi-continuous cultures under standardised conditions, in order to observe differences in their biochemical gross compositions (e.g. protein, lipid, carbohydrate and ash contents). Composition, expressed as % dry weight, indicated that the majority of species (52 %) contained only <15 % protein but had nearly twice the total amount of carbohydrate and two to three times higher ash content. In addition, most species contained a relatively constant percentage of lipids (19.4 to 25.6 %), whereas extraordinary high lipid contents (>30 %) were found for Amphora exigua, Gyrosigma spenceri, Pleurosigma angulatum and Gyrosigma littorale. Glucose, galactose, mannose and ribose constituted the majority of the sugars detected, although the levels of these varied between species. Lipid class composition showed high concentrations of phospholipids and galactolipids as major constituents (19–22 % and 40–43 % of total lipids). The major fatty acids in most species were 14:0, 16:0, 16:1(n-7) and 20:5(n-3). Significant differences in biochemical gross compositions were found in the temperature (10, 30 °C) and salinity tests (20, 35 PSU), suggesting special intracellular acclimatisation processes that provide possible explanations for the adaptability of the species to environmental variations and the distinct differences in the diatom assemblages.  相似文献   

7.
Seasonal dynamics in the polyphenolic composition, antioxidant activity, and their relationships during plant development were evaluated for eastern teaberry (Gaultheria procumbens L.) leaves, a traditional herbal medicine of North American natives. With the complementary UHPLC-PDA-ESI-MS3, HPLC-PDA-fingerprint, Folin-Ciocalteau, and n-butanol/HCl assays of methanol-water (75:25, v/v) extracts, the dried leaf samples harvested monthly across the growing season under Polish climate conditions were found rich in structurally diverse polyphenols (149.2–210.7 mg/g DW) including the dominating salicylates (64.6–107.5 mg/g DW), proanthocyanidins (53.0–66.8 mg/g DW), and flavonoids (17.3–25.3 mg/g DW), and the accompanying chlorogenic acid isomers (2.4–4.4 mg/g DW) and simple phenolic acids (0.9–1.1 mg/g DW). Among 28 detected analytes, gaultherin (64.6–107.5 mg/g DW), miquelianin (14.6–21.1 mg/g DW), procyanidin A-type trimer (5.5–9.5 mg/g DW), and (–)-epicatechin (5.8–7.8 mg/g DW) were the most abundant. The phenolic levels and antioxidant activity parameters in the DPPH (EC50, 15.0–18.2 μg DW/mL; 0.95–1.16 mmol Trolox equivalents/g DW) and FRAP (2.3–3.4 mmol Fe 2+/g DW; 0.86–1.26 mmol Trolox equivalents/g DW) assays showed parallel seasonal trends with maxima in September and October. As the subsequent correlation studies confirmed the determinative impact of polyphenols on the leaf antioxidant activity and its seasonal fluctuations, the Fall season could be recommended as optimal for harvesting the plant material for medicinal purposes and cost-effective production of natural health products.  相似文献   

8.
Effects of reduced salinities on dry weight (DW) and biochemical composition (total lipid and protein contents) of zoea 1 larvae were evaluated in four decapod crustacean species differing in salinity tolerance (Cancer pagurus, Homarus gammarus, Carcinus maenas, Chasmagnathus granulata). The larvae were exposed to two different reduced salinities (15‰ and 25‰ in C. granulata, 20‰ and 25‰ in the other species) for a long (ca. 50% of the zoea 1 moulting cycle) or a short period (16 h, starting at ca. 40% of the moulting cycle), while a control group was continually maintained in seawater (32‰).In general, the increments in dry weight, lipid and protein content were lower at the reduced salinities than in the control groups. In the zoea 1 of H. gammarus (stenohaline) and C. pagurus (most probably also stenohaline), the lipid and protein contents varied greatly among treatments: larvae exposed to low salinities exhibited very low lipid and protein contents at the end of the experiments compared to the controls. In some cases, there were negative growth increments, i.e. the larvae had, after the experimental exposure, lower lipid and protein contents than at the beginning of the experiment. C. maenas (moderately euryhaline) showed a lower variation in protein and lipid content than the above species. The zoea 1 of C. granulata (fairly euryhaline) showed the lowest variability in dry weight, protein and lipid content. Since salinity tolerance (eury- v. stenohalinity) is associated with the osmoregulatory capacity, our results suggest a relationship between the capability for osmoregulation and the degree of change in the biochemical composition of larvae exposed to variable salinities.Besides larval growth of these species should be affected by natural reductions of salinity occurring in coastal areas at different time scales. These effects may be potentially important for population dynamics since they should influence the number and quality of larvae reaching metamorphosis.  相似文献   

9.
The red alga Mazzaella laminarioides is an economically important species with an extended latitudinal distribution along the Chilean coast. Its populations form mid-intertidal stands, several meters wide, and therefore are differentially exposed to environmental variables that result in temporal and spatial variability in productivity. We evaluated the effect of latitude and intertidal height on productivity by in situ measurement of photosynthetic performance. Daily and seasonal variations of O2-evolution rate and maximal quantum yield (F v/F m) were determined in plants from the upper and lower intertidal zone at two localities 1500,km apart. Results suggest that plant responses were mainly affected by irradiation, temperature and desiccation. At local level, upper intertidal plants showed a reduced photosynthetic rate and quantum efficiency as compared to those displayed by plants from the lower intertidal, indicating their higher level of excitation energy acclimation. Stronger acclimation differences between upper and lower intertidal plants were observed in spring and summer. Differences in photosynthetic parameters between reproductive phases were recorded in autumn and winter, regardless of the position of the individuals in the intertidal zone. The effects of tidal elevation on seasonal patterns of photosynthesis were also influenced by latitude. Seasonal variation in photosynthetic efficiency was observed in plants from the northern population at both intertidal elevations, but only at the upper intertidal level in the southern population. This study shows that production variability in M. laminarioides results from differences in the intensity of environmental factors observed seasonally at local (intertidal) and latitudinal scales.  相似文献   

10.
Seasonal patterns of proteins and of cold hardiness were characterized in bark and xylem tissues of genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). In contrast with deciduous trees, which entered endodormancy and abscised leaves in the fall, evergreen trees retained their leaves and exhibited shoot elongation under favorable environmental conditions. A successive increase in the cold hardiness of bark and xylem was observed during the fall in both genotypes. This was followed by a subsequent decrease from midwinter to spring. Xylem tissue in both genotypes exhibited deep supercooling and a significant correlation (r = 0.99) between the midpoint of the low-temperature exotherm and the subzero temperature at which 50% injury occurred (assessed by electrolyte leakage) was noted. The maximum hardiness level attained in deciduous trees was more than twofold that of evergreens. Seasonal pattern of proteins from bark and xylem of the sibling genotypes was characterized by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Among other qualitative and quantitative changes, accumulation of a 19-kilodalton polypeptide in the bark of both genotypes was observed during fall followed by a decrease in spring. This polypeptide accumulated to higher levels in the deciduous peach compared with the evergreen. Additionally, a 16-kilodalton protein exhibited the same pattern in deciduous trees but not in the evergreen trees. Both the 19- and a 16-kilodalton bark proteins conform to the criteria of a bark storage protein. The relationship of seasonal changes in protein to cold hardiness and dormancy in these genetically related peach genotypes is discussed.  相似文献   

11.
We describe a methodology to investigate the potential of given microalgae species for biodiesel production by characterizing their productivity in terms of both biomass and lipids. A multi-step approach was used: determination of biological needs for macronutrients (nitrate, phosphate and sulphate), determination of maximum biomass productivity (the “light-limited” regime), scaling-up of biomass production in photobioreactors, including a theoretical framework to predict corresponding productivities, and investigation of how nitrate starvation protocol affects cell biochemical composition and triggers triacylglycerol (TAG) accumulation. The methodology was applied to two freshwater strains, Chlorella vulgaris and Neochloris oleoabundans, and one seawater diatom strain, Cylindrotheca closterium. The highest total lipid content was achieved with N. oleoabundans (25-37% of DW), while the highest TAG content was found in C. vulgaris (11-14% of DW). These two species showed similar TAG productivities.  相似文献   

12.
Spatial and temporal variations in sediment microbial community structure in a eutrophic lake polluted with inorganic mercury were identified using polar lipid fatty acid (PLFA) analysis. Microbial community structure was strongly related to mercury methylation potential, sediment organic carbon content, and lake location. Pore water sulfate, total mercury concentrations, and organic matter C/N ratios showed no relationships with microbial community structure. Seasonal changes and changes potentially attributable to temperature regulation of bacterial membranes were detectable but were less important influences on sediment PLFA composition than were differences due to lake sampling location. Analysis of biomarker PLFAs characteristic of Desulfobacter and Desulfovibrio groups of sulfate-reducing bacteria suggests that Desulfobacter-like organisms are important mercury methylators in the sediments, especially in the Lower Arm of Clear Lake.  相似文献   

13.
The concentrations of particulate matter, expressed as dry weight (DW), particulate organic (POM), and inorganic material were measured at regular intervals in Lake Constance between February 1980 and December 1982. Maximum particle concentrations were recorded for the euphotic zone in summer (7 mg l−1), while minima occurred during the early summer and in winter. Annual mean concentrations of DW within the entire water column varied between 0.6 and 0.7 mg l−1. In the euphotic zone nearly 70% of DW is organic material. The inorganic particles originate either from phytoplankton (diatomaceous silicon, biogenic decalcification) or from the tributaries. Although phytoplankton biomass only comprises a relatively small proportion (i.e. 30% at maximum) of organic matter, it is the primary source of POM. Therefore, seasonal variations in phytoplankton control epilimnetic concentrations of POM in Lake Constance. Inorganic material comprises smaller proportions of suspended matter. Seasonal variations are related predominantly to fluctuations in biomass and therefore particulate inorganic matter is suggested to originate mainly from autochthonous sources. At the sampling station concentrations of inorganic particles supported by the main tributary, the Alpenrhein, only occasionally vary concomitantly with runoff.  相似文献   

14.
Total flavonoid content (TFC) and cyanidin‐3‐glucoside (Cyd‐3‐glu) of seed and seed coat extract of 16 genotypes from five species of Carthamus were studied, and their major polyphenolic compounds and antioxidant activity of the seed coat extracts were determined using HPLC analysis and DPPH assay, respectively. Additionally, fatty acids composition of the seed oil was analyzed by GC. In general, TFC and Cyd‐3‐glu content of seed coat extracts were higher than those of seed extracts. A novel breeding line with black seed coat (named A82) depicted lower TFC (3.79 mg QUE/g DW) but higher Cyd‐3‐glu (24.64 mg/g DW) compared to the white and other seed‐pigmented genotypes. DPPH radical scavenging activity showed a strong association with Cyd‐3‐glu content (r = 0.84), but no correlation with TFC (r = ?0.32). HPLC analysis of seed coat extracts revealed that four compounds were dominant constituents including rutin (7.23 – 117.95 mg/100 g DW), apigenin (4.37 – 64.88 mg/100 g DW), quercetin (3.09 – 14.10 mg/100 g DW), and ferulic acid (4.49 – 30.41 mg/100 g DW). Interestingly, the genotype A82 with an appropriate polyunsaturated/saturated fatty acids index (5.46%) and a moderate linoleic fatty acid content (64.70%) had higher nutritional and pharmaceutical value than all the other genotypes.  相似文献   

15.
Spatial distribution and functional structure of intertidal benthic macrofauna in relation to environmental variables in the Jade Bay (southern North Sea) were studied and compared with other intertidal areas of the Wadden Sea. A total of 128 stations covering the whole Jade Bay were sampled in summer 2009. A total of 114 taxa were found. Highest species numbers occurred in the subtidal areas, whereas highest mean abundances were found in the upper intertidal areas. Based on species abundance data, six significantly distinct macrofauna communities in the Jade Bay were identified and evaluated with multivariate statistics, univariate correlations and canonical correspondence analysis. Differences in these community patterns were caused by the response of the dominant species (Hydrobia ulvae, Tubificoides benedii, Pygospio elegans, Caulleriella killariensis, Scoloplos armiger, Urothoe poseidonis, Microprotopus maculatus) to prevailing environmental conditions along the gradient from the lower and exposed sandy intertidal areas via intermediate mixed sediments to the upper mudflat areas. Distribution patterns in relation to tidal zonation were best explained by variability in submergence time, Chlorophyll a (chl a) content and sediment composition (mud content), which are proxies for hydrodynamic conditions and food availability. Species inventory and species richness were comparable with other intertidal areas of the Wadden Sea, but the Jade Bay differs from these areas regarding dominant species. Differences in sediment composition and morphological characteristics (macrotidal versus mesotidal Wadden Sea areas) are discussed for comparison of regional differences.  相似文献   

16.
The strong 1982/83 El Niño event caused local extinction in populations of the low intertidal kelp Lessonia nigrescens Bory on northern Chilean coasts. The kelp has partially recolonized, but its recovery has apparently been low. This study documents the effect of biological factors that potentially decrease the velocity of kelp recolonization in northern Chile. A removal experiment showed that encrusting coralline algae, which dominate the lower intertidal, significantly reduce the recruitment of L. nigrescens in the presence of herbivores. Epithallium shedding by encrusting corallines is the most probable cause for this inhibition process. On the other hand, grazing on encrusting corallines by the chiton Enoplochiton niger (Barnes), a large-sized herbivore (10–20 cm length), could also affect kelp recruitment. The intestinal content of E. niger, where encrusting corallines are the main item (84.2%), revealed the presence of L. nigrescens. Among the natural substrata on which kelp recruits, measured at five different localities, the coarsely-branched alga Corallina officinalis (Decaisne) Kützing reached the highest frequency, despite its extremely low cover (< 1%) in the field. This suggests that settlement on turfs of C. officinalis allows the kelp to escape from herbivory, thus facilitating its recruitment. The roles of timing of kelp recruitment and seasonal grazing are also discussed.  相似文献   

17.
Maximum nitrate reductase (NR) activity was measured in two intertidal morphotypes of Zostera noltii (Hornem.) in Ria Formosa tidal lagoon, southern Portugal. The two morphotypes develop in the upper and lower limits of the intertidal meadows. The NR activity was measured using an in vivo method, without cell disruption. NR activity was 30-40 fold higher in leaves than in roots, which indicates that nitrate reduction is essentially made through the aerial part of the plant. The effects of assay temperature (5 °C steps, from 5 to 45 °C), pH (7, 8 and 9) and elevation (upper and lower intertidal) on leaf NR activity were tested in a factorial design (n=5). Both elevation and assay temperature had a significant effect on NR activity, but not pH. NR activity was always higher in the upper intertidal plants, at all temperatures. Activity peaks for upper and lower plants were, respectively, 6.12 μmol NO2 g−1 DW 0.5 h−1 at 25 °C, and 3.30 μmol NO2 g−1 DW 0.5h−1 at 35 °C. Further investigation on environmental factors concerning the intertidal environment must be developed, as they are probably responsible for the significant differences found between the values of NR activity in the upper and lower morphotype.  相似文献   

18.
Recent progress in Macrocystis mariculture is based on clonal stock cultures of gametophyte parents. Batches of up to 105 genetically identical sporophyte seedlings can be produced at any time in the laboratory and explanted in the field for production of biomass. Sexual crosses of selected Macrocystis pyrifera gametophyte parents of different geographic origin along the coast of Chile showed heterosis and produced sporophyte batches with superior growth performance. Starting from zygotes, after 10 weeks in the laboratory and 5 months in the sea, our best hybrid genotypes grew up to 11 kg fresh weight per frond, which corresponds to 66 kg m−1 of line in a commercial mariculture installation. In contrast, average yields of 14.4 and 22 kg m−1 are reported in the literature for traditional methods. Additional experiments, including inter-specific crosses M. pyrifera × M. integrifolia and their performance in different climate zones of Chile, confirm that heterosis is a powerful tool for crop improvement in Macrocystis. It opens the possibility to construct tailor-made heterosis genotypes with maximum productivity and/or other desired properties for any given locality.  相似文献   

19.
The giant kelp Macrocystis (integrifolia) has been intensely harvested in northern Chile for several years. In order to prevent a future disaster, we developed two different techniques for restoration of damaged Macrocystis integrifolia beds in the Atacama region of Chile. (1) Explantation: Laboratory-grown juvenile sporophytes were fixed to different substrata (plastic grids, ceramic plates, or boulders) by elastic bands or fast-drying glue (cyanoacrylate). Explants reached 150–200 cm in length within 5 months (relative growth rate?≈?1.3–1.7 % day?1), and reproductive maturity in 5–7 months. (2) Seeding of spores: Mature sporophylls were placed at 8 m depth on the sea bottom, supported by cotton gauze sleeves attached to boulders of different origin. Sixty percent of clean boulders collected on the beach produced up to seven recruits per boulder. In contrast, 20 % of the boulders from the sea bottom, colonized by epibionts, showed up to two recruits. Relative growth rates, however, were similar (≈2.4–2.6 % day?1). Practical applications of our findings are: laboratory-produced juvenile sporophytes fixed to various substrata by elastic bands or cyanoacrylate glue can be used to colonize rocks or artificial reefs. In cases, where laboratory-grown seedlings are unavailable, mature sporophylls from nearby Macrocystis beds can be used to establish new recruits on rocky substrata.  相似文献   

20.
Many changes occur in the biochemical composition of microalgae in response to stress conditions. In the present study, two nitrogen-stressed Chlorella minutissima strains (MACC 360 and 452) were placed in media containing a range of nitrogen concentrations (7–700?mg?L?1 N). Biomass, chlorophyll a and b, carotenoid, protein and lipid concentrations were monitored over 15?days. There was lower biomass accumulation in nitrogen-deficient treatments while lipid yields increased to 40–46% DW in response to nitrogen deficiency. Chlorophyll concentrations initially recovered in response to the nitrogen spike with maximum concentrations recorded on days?6–8 and decreased thereafter as nitrogen became limiting. In comparison, proteins recovered faster with maximum concentrations recorded on day?4. Carotenoid concentrations did not increase in response to the nitrogen spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号