首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isolated rat hepatocytes: phosphorylase activation by the ionophore A23187 was enhanced in the presence of tumour-promoting phorbol esters and 1,2- (but not 1,3-) diacylglycerols (dioleoyl- and oleoylacetyl-glycerol), with a similar dose-dependency; the activation of phosphorylase by phenylephrine (1 microM) (but not by vasopressin or glucagon) was inhibited both by tumour-promoting phorbol esters and diacylglycerols, but with a different dose-dependency: complete inhibition was achieved with concentrations of phorbol esters two orders of magnitude lower than those of diacylglycerol; binding of the alpha 1-adrenergic antagonist [3H]prazosin and its displacement by unlabelled prazosin was not significantly affected in the presence of the phorbol esters. The possible involvement of protein kinase C in the control of phosphorylase interconversion is discussed.  相似文献   

2.
Human platelets are known to possess 5HT2 receptors which, when activated, amplify the aggregation response produced by other aggregating agents. Several 5HT2 receptor antagonists, including ketanserin and ritanserin, are known to antagonize serotonin-mediated aggregation of human platelets. In the present study, we document the ability of three ergoline 5HT2 receptor antagonists, LY53857, sergolexole, and LY237733, to antagonize the serotonergic component of the human platelet aggregation response. Potencies of the ergoline esters (LY53857 and sergolexole) and the ergoline amide (LY237733) to inhibit serotonin-amplified platelet aggregation responses were similar to the potencies of ketanserin and ritanserin under the conditions of our study. Furthermore, all five 5HT2 receptor antagonists were capable of fully inhibiting the serotonergic component of the platelet aggregation response. In contrast to these potent ergoline esters and amides, 1-isopropyl dihydrolysergic acid (up to 10(-5)M), a putative metabolite of the ergoline esters, was ineffective under these in vitro conditions. These data are consistent with the high potency of these ergolines as antagonists of 5HT2 receptors and further support the involvement of 5HT2 receptors on human platelets in the amplifying response to serotonin.  相似文献   

3.
We have reported previously that tumour-promoting phorbol esters modulate both basal and vasoactive intestinal polypeptide (VIP)-stimulated adenylyl cyclase activity in GH3 (an established pituitary cell line). Here, we probe the receptor and cell specificity of this response. Experiments were performed in the presence of isobutylmethylxanthine. Unlike the response in GH3 cells, the tumour-promoting phorbol ester (tetradecanoyl phorbol acetate (TPA] did not affect either basal adenylyl cyclase activity nor VIP-stimulated activity in the rat osteosarcoma subclones UMR 106-01 and UMR 106-06. In addition, the cyclase responses to parathyroid hormone (PTH), and, in the case of UMR 106-06, to calcitonin were unaffected by tumour-promoting phorbol ester. However, prostaglandin E2-stimulated cyclase activity in both of these subclones was attenuated in a dose-dependent manner.  相似文献   

4.
The dinitrosyl iron complexes (DNIC) with thiosulphate, cysteine or phosphate were shown to inhibit in vitro (in citrate plasma) the human platelet aggregation induced by ADP, collagen or adrenaline. This effect cannot be explained by the toxic action of DNIC on the platelet membrane, since DNIC-pretreated platelets are capable of aggregating under the action of 10(-8) M/ml of phorbol ester, which is known to cause direct activation of protein kinase C. The antiaggregatory activity of DNIC exceeds that of Na-nitroprusside and seems to be due to nitric oxide capable to activate guanylate cyclase of platelets. Using the EPR method, it was shown that addition of DNIC to platelet-enriched plasma results in a rapid transfer of Fe(NO)2 groups to the coupled RS(-)-groups proteins of plasma and, apparently, of platelet membrane proteins. These protein DNIC seem to be the source of NO which inhibits human platelet aggregation.  相似文献   

5.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

6.
Phorbol esters, potent activators of protein kinase C (PKC), greatly enhance the release of arachidonic acid and its metabolites (TXA2, HETES, HHT) by Ca2+ ionophores in human platelets. In this paper, we report the relationship between intracellular Ca2+ mobilization and external calcium influx into platelets and the ability of PMA plus A23187 to promote thromboxane A2 (TXA2) synthesis. The enhanced levels of TXA2 due to the synergistic stimulation of the platelets with A23187 and phorbol esters are not affected significantly by the presence of external Ca2+ or the calcium-chelator EGTA. PKC inhibitors, staurosporine and sphingosine, abolished phorbol myristate acetate (PMA) potentiation of TXA2 production which strongly supports the role of PKC in the synergism. Platelet aggregation is more sensitive to PMA and external calcium than TXA2 formation. PMA increased TXA2 production as much as 4-fold at low ionophore concentrations. The A23187-induced rise in [Ca2+]i was reduced by pretreatment of human platelets with phorbol esters, both in the presence and absence of EGTA, and staurosporine reversed this inhibitory effect. These results indicate that the synergistic stimulation of TXA2 production by A23187 and phorbol esters is promoted by intracellular Ca2+ mobilization and not by external calcium influx. Our data also suggest that PKC is involved in the regulation of Ca2+ mobilization from some specific intracellular stores and that PKC may also stimulate the Ca(2+)-dependent phospholipase A2 at suboptimal Ca2+i concentrations.  相似文献   

7.
We studied the action of the alpha 2 adrenergic agonist adrenaline on the platelet responses evoked by the activation of protein kinase C or by the ionophore induced increase of cytosolic Ca2+. Both the phorbol ester and ionomycin-induced aggregation are strongly potentiated by adrenaline which per se does not behave as an activating agonist. The potentiation by adrenaline is observed both when added before and after the aggregating agent; in the latter case the effect increases on increasing the delay of adrenaline addition. Adrenaline also reverses the inhibition by cAMP of the PMA (or ionomycin) induced aggregation. It also has a strong potentiating effect (over 100%) on the phorbol ester induced ATP secretion and a weaker effect on the secretion induced by ionomycin. The effect on secretion is visible only when adrenaline is added prior to the stimulus. The inhibition by cAMP of the PMA or ionomycin induced secretion is also counteracted by adrenaline. In no case adrenaline modifies the pattern of platelet phosphoproteins. Ionomycin induces some platelet aggregation also in the presence of the protein kinase inhibitor staurosporine; also this phosphoprotein independent aggregation is strongly stimulated by adrenaline.  相似文献   

8.
C-reactive protein (CRP) is an acute phase reactant which shares numerous functional characteristics with the immunoglobulins. In the present study CRP was found to inhibit the aggregation of human platelets stimulated by either modified human immunoglobulin or thrombin. This effect did not involve chelation of calcium or cytotoxicity, and was overcome by larger amounts of the aggregating agents. CRP also inhibited the activation but not the activity of platelet factor 3 and the release of beta-glucuronidase. Thus, CRP can inhibit multiple platelet reactivities. We suggest that this property of CRP may play an important role in the control of platelet responsiveness during reactions of inflammation, defense, and repair.  相似文献   

9.
S F Brooks  F J Evans  A Aitken 《FEBS letters》1987,224(1):109-116
Using a pituitary tumour cell line (GH3), we have studied the phosphorylation of intracellular proteins induced by phorbol esters of diverse biological activity. All the active phorbol esters, including the weakly tumour-promoting but non-platelet aggregatory compound DOPPA, stimulated the phosphorylation of a cytosolic 80 kDa protein. A protein of this molecular mass has been suggested to be a marker of PKC activity. In contrast, only TPA and the non-tumour promoting but highly active phorbol ester SAP A stimulated the phosphorylation of a 130 kDa membrane protein. The results suggest that these phorbol esters activate PKC, but induce the differential phosphorylation of a variety of intracellular proteins.  相似文献   

10.
Phorbol esters with different biological activities have been tested for their ability to induce the phosphorylation of human platelet proteins. We have shown that only the potent platelet aggregatory phorbol esters were able to stimulate the phosphorylation of proteins of 76, 68, 47, 30 and 20 kDa in intact platelets. The ability of these esters to stimulate phosphorylation of the 47-kDa protein ('p47') correlated with their ability to cause platelet aggregation. When a non-platelet aggregatory deoxyphorbol (12-deoxyphorbol 13-phenylacetate 20-acetate) was combined with a subthreshold dose of the Ca2+ ionophore, A23187, a large increase in phosphorylation of p47 and a fourfold decrease in Ka was observed. This was in contrast to a barely detectable stimulation of phosphorylation at micromolar levels of this phorbol ester in the absence of the ionophore. This synergism was not evident for the potent platelet aggregatory derivatives. The Ka for DOPPA with a mixture of total platelet protein kinase C was 530 nM in the absence of calcium decreasing to 120 nM in the presence of calcium. In the presence of calcium, 12-deoxyphorbol 13-phenylacetate 20-acetate was shown to stimulate preferentially one of the isoforms of protein kinase C.  相似文献   

11.
Hormonal induction of granulosa cell maturation is inhibited by phorbol esters and permeant synthetic diacylglycerols, but these activators of protein kinase C differ in their effects on cAMP production and actions. Both agents prevented the induction of luteinizing hormone receptors and progesterone biosynthesis by follicle-stimulating hormone, choleragen, and forskolin, but only diacylglycerol abolished the cAMP responses to these stimuli. Granulosa cell aggregation and aromatase activity were inhibited by phorbol ester but not completely by diacylglycerol. In intact granulosa cells, cytosolic C kinase activity was rapidly decreased by phorbol ester but unaffected by diacylglycerol. Although diacylglycerol has a marked inhibitory action on cAMP production, the more prominent suppression of granulosa cell differentiation by phorbol ester may be related to its rapid and prolonged action on kinase C.  相似文献   

12.
Bombesin-related peptides stimulate a rapid increase in polyphosphoinositide hydrolysis in Swiss-mouse 3T3 cells. These peptides generate an increase in the efflux of 45Ca2+ from pre-labelled cells, a response consistent with an inositol trisphosphate-mediated mobilization of intracellular Ca2+. The bombesin-stimulated release of cellular 45Ca2+ is inhibited by tumour-promoting phorbol esters (e.g. 12-O-tetradecanoylphorbol 13-acetate, TPA). Although there are several possible sites of action at which this effect might occur, our results indicate that TPA induces an uncoupling of bombesin-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) without decreasing cellular binding of bombesin. In cultured cells, protein kinase C can be down-modulated by a prolonged incubation of the cells with phorbol esters. Such pretreatment greatly decreased the inhibitory effect of TPA on bombesin-stimulated PIP2 hydrolysis, suggesting that this action of the phorbol ester is mediated via protein kinase C. Since diacylglycerol is an endogenous activator of protein kinase C and a direct product of PIP2 hydrolysis, these results suggest that protein kinase C inhibition of polyphosphoinositide hydrolysis may function as a negative-feedback pathway. Cells in which protein kinase C has been down-modulated show elevated basal and bombesin-stimulated production of inositol phosphates, providing evidence that such a feedback loop limits polyphosphoinositide turnover in both unstimulated and mitogen-stimulated cells.  相似文献   

13.
Cells of the marine sponge, Microciona prolifera, the most ancient of the animal cells which clump on recognition, resemble neutrophils and platelets in undergoing stimulus-response coupling when exposed to Ca2+ ionophores and phorbol esters. We have studied lipid content and remodelling in sponge cells by thin-layer, gas-liquid, and high-performance liquid chromatography (HPLC) analyses supplemented by ultraviolet and mass spectroscopy. Phosphatidylcholine (PC) (35.6%), phosphatidylethanolamine (PE) (27.4%) and phosphatidylserine (PS) (21.4%) constituted the bulk of phospholipids detected. The major fatty acids were all polyenoic; 22:6 (22%), 26:2 (17%) and 26:3 (15%). Arachidonic acid (20:4), present as 2.7% of total phospholipid, and docosahexanoic acid (22:6) were found to elicit aggregation of sponge cells when added (10 microM) in synergy with ionomycin (1 microM), resembling in their effects those of phorbol esters (but not phorbol) and 1-oleyl-2-acetylglycerol (OAG). Moreover, 20:4 and 22:6, as well as phorbol ester and OAG, overcame the block to aggregation imposed by colchicine and vinblastine. Kinetic studies of lipid remodelling showed that aggregating cells diverted [14C]22:6 or [14C]20:4 from triacylglycerol into diacylglycerol and phospholipids; appearance of label in phosphatidic acid and phosphatidylinositol (PI) anteceded labeling of phosphatidylcholine. In unstimulated cells, [14C]22:6 was rapidly incorporated into phosphatidylcholine with little accumulation in phosphatidate. Although 22:6 and 20:4 resembled OAG and phorbol esters in overcoming the effects of colchicine and vinblastine (which had no effects on overall lipid metabolism), they did not reverse the block to aggregation of nordihydroguaiaretic acid (NDGA) (which inhibited lipid metabolism). Under none of these circumstances was 22:6 or 20:4 converted to cyclooxygenase or lipoxygenase products in the course of aggregation: all labeled acyl groups remained present as unmodified fatty acids on alkaline hydrolysis. These data not only extend the observations of Muller et al. (J. Biol. Chem. 262 (1987) 9850-9858) on the role of phosphoinositides and C kinase in marine sponge cell aggregation, but also demonstrate that sponges form diacylglycerols in the process. We suggest that exogenous 22:6 and 20:4 (like phorbol esters or OAG) can substitute for endogenous diacylglycerol in the activation of protein kinase C.  相似文献   

14.
A systemic study based on literature data concerning the structure-activity relationships within a set of phorbol derivatives was carried out. Evidence in favour of the existence of two binding sites for phorbol derivatives on the receptor surface was obtained. The diterpenoid cycle binding site and the hydrophobic site for the binding of acyl hydrocarbon chains 12 and 13 were identified. The tumour-promoting effects of phorbol esters are due to their capability to simultaneously interact with the both sites of the receptor.  相似文献   

15.
The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release β-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.  相似文献   

16.
Ehrlich ascites tumour cells (EATC) induced the aggregation of human platelets but not of sheep or rabbit platelets in native platelet-rich plasma. Aggregation was initiated by the interaction of EATC with a component(s) of human plasma, possibly related to the complement system, which led to the release of cellular ADP, a potent platelet aggregating agent. EATC previously incubated with human platelet-poor plasma induced immediate aggregation in platelet-rich plasma from all three species. The species difference in platelet aggregation by EATC is therefore related to the activity or availability of plasma component(s) responsible for release of cellular ADP rather than to intrinsic differences in platelet responsiveness to the tumour cells.  相似文献   

17.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

18.
The effect of the nucleoside 5′-(glycosyl pyrophosphates) on the aggregation of human blood platelets has been studied in vitro. Devoid of any aggregating effect, ADP-ribose was shown to act as a moderate inhibitor on the ADP-induced aggregation. After a preincubation without stirring, the inhibitory effect of ADP-ribose increased and total inhibition was reached after 20 min. On the contrary, ADP-mannose caused platelet aggregation in citrated plasma. During the course of a 20-min incubation, ADP-mannose progressively lost the aggregating effect and showed total inhibition. At first, ADP-glucose showed a slight aggregating effect, but after a 20-min incubation it also became inhibitory. The UDP- and GDP-sugars have no effect on aggregation, and thus may be used in the study of glycoprotein biosynthesis by platelets.  相似文献   

19.
Obesity, diabetes, hyperlipidaemia and age are conditions predisposing to atheroscleorosis and arterial occlusion. Recently it has been claimed that increased synthesis of thromboxane A2 by platelets and decreased synthesis of prostacyclin (PGI2) by blood vessels play an important role. The “Zucker” rat, a genetically obese animal with hyperlipidaemia, hyperinsulinaemia and normoglycaemia was used to study platelet aggregation, thromboxane (TXB2) production and aortic PGI2 synthesis. Two age groups (6–8 months and 14–16 months old) and their homozygote lean controls were used. In the obese rats no increased aggregation was found with ADP, arachidonic acid and collagen. On the contrary platelets from young fatty rats were less sensitive to ADP than platelets from lean young animals. An increase in platelet sensitivity to aggregating agents with age was observed, especially in the obese rats. TXB2 measured in platelet rich plasma after exposure to ADP, arachidonic acid, arachidonic acid plus ADP and collagen was similar in the fatty and lean animals.Production of PGI2 from incubated aortic rings was lowest in young lean animals. No differences existed between the other groups of rats studied. Insulin added to aortic rings had no influence on PGI2 production. It is concluded that age rather than obesity, hyperlipidaemia or hyperinsulinaemia may cause platelet hyperresponsiveness to aggregating agents. Thromboxane and plateletaggregation do not closely correlate. PGI2 production is not reduced by metabolic alterations, thought to predispose to atherosclerosis.  相似文献   

20.
The importance of circulating blood cells has been further emphasized as monocytes may also contribute to the pathogenesis of atherosclerosis. The pathological changes in atheroma may be partly mediated by metabolites of arachidonic acid. The aim of this study was determining thromboxane B2 concentrations in the supernatants of monocytes cultures and its influence on platelet aggregation. Human blood monocytes were recovered according to the procedure of B?yum and incubated with LPS. It was shown that monocytes produced thromboxane A2. The culture supernatant of monocytes from 36 h cultivation exerts an independent effect on platelet aggregation, which has been modified by inhibitors of aggregating factors. The results may indicate the influence of monocytes on AA metabolism in particular TXB2 production, platelet function and indirectly on the atherosclerotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号