共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma. 相似文献
2.
Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. 总被引:5,自引:0,他引:5
M Nistér L Claesson-Welsh A Eriksson C H Heldin B Westermark 《The Journal of biological chemistry》1991,266(25):16755-16763
Glioma cells in culture express platelet-derived growth factor (PDGF) A- and B-chains and secrete PDGF-like activity that is mainly PDGF-AA. In this work, we show that the PDGF alpha- and beta-receptors are independently expressed in human malignant glioma cells. We also define three different receptor phenotypes that are related to the morphology of glioma cells: cells with only alpha-receptors, only beta-receptors, or with both types of receptors. By the help of Northern blot analyses, 125I-PDGF-binding experiments, and immunoprecipitations the receptors are shown to be structurally normal PDGF receptors, except for minor variations in size that probably are due to differences in glycosylation. PDGF-BB induces DNA synthesis in cells of all three receptor phenotypes, whereas PDGF-AA or PDGF-AB has this effect only on cells with alpha- or with alpha- and beta-receptors. 125I-PDGF-AB binds with high affinity and down-regulates beta-receptors only in cells where alpha-receptors are present in addition to beta-receptors. Thus, the different functional capacities of PDGF isoforms on glioma cells fit with their known receptor-binding specificities and are compatible with the hypothesis that the isoforms act by inducing dimeric receptor complexes. When data on PDGF A- and B-chains, as well as alpha- and beta-receptor expression are compiled and the pattern of receptor binding specificity is taken into account, the majority of glioma cell lines are found to have a phenotype that makes autocrine stimulation possible. 相似文献
3.
Rolph MS Young TR Shum BO Gorgun CZ Schmitz-Peiffer C Ramshaw IA Hotamisligil GS Mackay CR 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(11):7794-7801
The fatty acid-binding protein (FABP) family consists of a number of conserved cytoplasmic proteins with roles in intracellular lipid transport, storage, and metabolism. Examination of a comprehensive leukocyte gene expression database revealed strong expression of the adipocyte FABP aP2 in human monocyte-derived dendritic cells (DCs). We isolated bone marrow-derived DC from aP2-deficient mice, and showed that expression of DC cytokines including IL-12 and TNF was significantly impaired in these cells. Degradation of IkappaBalpha was also impaired in aP2-deficient DCs, indicative of reduced signaling through the IkappaB kinase-NF-kappaB pathway. The cytokine defect was selective because there was no effect on Ag uptake or expression of MHC class II, CD40, CD80, or CD86. In an MLR, aP2-deficient DCs stimulated markedly lower T cell proliferation and cytokine production than did wild-type DCs. Moreover, aP2-deficient mice immunized with keyhole limpet hemocyanin/CFA showed reduced production of IFN-gamma by restimulated draining lymph node cells, suggesting a similar defect in DC function in vivo. Similarly, infection of aP2-deficient mice with the natural mouse pathogen ectromelia virus resulted in substantially lower production of IFN-gamma by CD8+ T cells. Thus, FABP aP2 plays an important role in DC function and T cell priming, and provides an additional link between metabolic processes and the regulation of immune responses. 相似文献
4.
Cloning and tissue expression of chicken heart fatty acid-binding protein and intestine fatty acid-binding protein genes 总被引:1,自引:0,他引:1
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species. 相似文献
5.
Hepatocyte nuclear factor 1alpha (HNF1alpha)-null mice have enlarged fatty livers and alterations in the expression of genes encoding enzymes involved in the synthesis, catabolism, and transport of fatty acids. Elevations in the expression of genes encoding fatty acid synthetic enzymes (fatty acid synthase and acyl-CoA carboxylase) and peroxisomal beta-oxidation enzymes (CYP4A3, bifunctional enzyme, and thiolase) were observed in the livers of HNF1alpha-null mice, whereas hepatic mitochondrial beta-oxidation gene (medium and short chain acyl-CoA dehydrogenase) expression levels remain unchanged relative to HNF1alpha-heterozygous controls. An elevation in the levels of fatty acid transporter gene expression was also observed. In contrast, there was a marked reduction of liver fatty acid-binding protein (l-FABP) gene expression in the livers of HNF1alpha-null mice. Isolation and sequence analysis of the 5'-flanking region of the mouse l-FABP gene revealed the presence of two HNF1alpha regulatory elements. The results of transient transfection studies indicate that HNF1alpha is required to trans-activate the expression of the l-FABP promoter. Taken together, these data define a critical role for HNF1alpha in the pathogenesis of a phenotype marked by fatty infiltration of the liver and in the regulation of the l-FABP gene, the expression of which may have a direct impact on the maintenance of fatty acid homeostasis. 相似文献
6.
Acute and chronic ethanol ingestion cause embryopathy similar to that of hyper- or hypovitaminosis A. Experimental data have suggested interaction between vitamin A and alcohol signaling pathways at the level of metabolic interference, which ultimately affects the concentration of retinoic acid (RA) in animals. The present study was set up to examine the possible effects of alcohol on cellular RA binding protein I (CRABP-I) expression during embryonic development by using transgenic mouse embryos and P19 embryonal carcinoma cells as experimental models. It was found that expression of the mouse CRABP-I gene was elevated in developing embryos at mid-gestation stages as a result of ethanol consumption by the mothers. Specific elevation of this gene was detected in the limb bud and the gut. In the P19 model, the CRABP-I gene was directly upregulated by ethanol, which was not blocked by a protein synthesis inhibitor. Furthermore, the regulation of the CRABP-I gene by ethanol was mediated by the 5' upstream regulatory region of the CRABP-I gene promoter. A potential interaction of vitamin A and ethanol at the level of CRABP-I gene expression is discussed. 相似文献
7.
Recently we have detected and partially purified a 15-kDa cytosolic L-alpha-lysophosphatidic acid (LPA)-binding protein (LPABP), which stimulates export of LPA from mitochondria (Vancura, A., Carroll, M. A., and Haldar, D. (1991) Biochem. Biophys. Res. Commun. 175, 339-343). Now we have purified this protein to homogeneity. By Western immunoblot analysis, amino acid sequence analysis, and binding characteristics we have shown that LPABP is identical with liver fatty acid-binding protein (L-FABP). This protein binds LPA, and stimulates mitochondrial and microsomal glycerophosphate acyltransferase (GAT) and the export of LPA from both the organelles. The mitochondrially synthesized LPA exported by L-FABP can be converted to phosphatidic acid by microsomes. L-FABP also stimulates microsomal conversion of LPA to phosphatidic acid but strongly inhibits this reaction in mitochondria. However, in the absence of L-FABP mitochondria predominantly synthesize PA. Taken together, these findings are suggestive that L-FABP plays a major role in mitochondrial and microsomal phospholipid metabolism by regulating both the synthesis and utilization of LPA. 相似文献
8.
M Senjo T Ishibashi Y Imai K Takahashi T Ono 《Archives of biochemistry and biophysics》1985,236(2):662-668
A fatty acid-binding protein has been identified and isolated from the cytosol fraction of rat brain. The fatty acid-binding protein was purified to homogeneity by gel filtration and preparative isoelectric focusing. The binding protein was different from Z protein from rat liver in its isoelectric point and immunological reactivity, in spite of its similar molecular weight of 12,000. Rabbit antibodies against rat liver Z protein were used to demonstrate that the fatty acid-binding proteins from rat liver and brain are immunologically unrelated, and that no Z protein is present in rat brain cytosol. 相似文献
9.
10.
Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation 总被引:10,自引:0,他引:10
Smith AJ Thompson BR Sanders MA Bernlohr DA 《The Journal of biological chemistry》2007,282(44):32424-32432
Adipocyte fatty acid-binding protein (AFABP/aP2) forms a physical complex with the hormone-sensitive lipase (HSL) and AFABP/aP2-null mice exhibit reduced basal and hormone-stimulated lipolysis. To identify the determinants affecting the interaction fluorescence resonance energy transfer (FRET) imaging was used in conjunction with a mutagenesis strategy to evaluate the roles AFABP/aP2 fatty acid binding and HSL phosphorylation have in complex formation as well as determine the HSL binding site on AFABP/aP2. The nonfatty acid binding mutant of AFABP/aP2 (R126Q) failed to form a FRET-competent complex with HSL either under basal or forskolin-stimulated conditions, indicating that lipid binding is required for association. Once bound to HSL and on the surface of the lipid droplet, YFP-AFABP/aP2 (but not YFP-HSL) exhibited energy transfer between the fusion protein and BODIPY-C12-labeled triacylglycerol. Serine to alanine mutations at the two PKA phosphorylation sites of HSL (659 and 660), or at the AMPK phosphorylation sites (565), blocked FRET between HSL and AFABP/aP2. Substitution of isoleucine for lysine at position 21 of AFABP/aP2 (K21I), but not 31 (K31I), resulted in a non-HSL-binding protein indicating that residues on helix alphaI of AFABP/aP2 define a component of the HSL binding site. These results indicate that the ligand-bound form of AFABP/aP2.interacts with the activated, phosphorylated HSL and that the association is likely to be regulatory; either delivering FA to inhibit HSL (facilitating feedback inhibition) or affecting multicomponent complex formation on the droplet surface. 相似文献
11.
A three-fold increased 32P incorporation was observed when S-100 protein was added to a nuclear protein kinase preparation (NPKP) from brain. The specificity of the reaction was indicated by two observations: an increase in 32P incorporation was not found either with 14–302 protein or when S-100 was added to liver NPKP. SDS-gel analysis shows prominent incorporation of 32P by brain NPKP into an endogenous brain protein having a molecular weight near 45000 daltons, and, in the presence of S-100, predominantly into S-100 protein itself. Liver NPKP in the presence of S-100, showed an increased incorporation of 32P into endogenous proteins without any phosphorylation of S-100. 相似文献
12.
The mouse germ cell nuclear factor (mGCNF) is an orphan nuclear receptor implicated in diverse biological processes, including gametogenesis, embryonic development and embryonal carcinoma cell differentiation. We have examined the binding and regulation of the human orthologue, hGCNF, expressed in the teratocarcinoma-derived cell line NTera-2/clone D1 (NT2/D1). Binding of GCNF to the direct repeat of the sequence -AGGTCA- (DR-0) is conserved in mammalia. The formation of interspecies dimers of the in vitro synthesized proteins suggests that cellular GCNF binding is mediated by homodimers. Both the mouse and the human protein bind in concert with cellular factors to DNA. Treatment of NT2/D1 cells with all-trans retinoic acid (atRA) is accompanied first by an up-regulation followed later by a down-regulation of hGCNF and its mRNA. Temporary up-regulation in NT2/D1 cells after treatment with atRA suggests that hGCNF is important for human neural determination and differentiation. 相似文献
13.
Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein 总被引:3,自引:0,他引:3
Balendiran GK Schnutgen F Scapin G Borchers T Xhong N Lim K Godbout R Spener F Sacchettini JC 《The Journal of biological chemistry》2000,275(35):27045-27054
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron. 相似文献
14.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation. 相似文献
15.
P. Kiefer G. Jaques J. Schneberger G. Heinrich K. Havemann 《Experimental cell research》1991,192(2):414-417
Insulin-like growth factor binding proteins (IGF-BP) are secreted by several human small cell lung cancer cell lines (SCLC). In order to identify the IGF-BPs from SCLC cell lines the RNA from 10 different SCLC cell lines was analyzed by Northern blot analysis with the probes for three different IGF-BPs, IGFBP-1, IGFBP-2, and IGFBP-3. No hybridization signal could be detected with the probes encoding for IGFBP-1 and IGFBP-3. The hybridization with different IGFBP-2-specific oligodeoxynucleotide probes and with the corresponding full-length cDNA showed that all SCLC cell lines which secreted IGF-BPs express IGFBP-2. 相似文献
16.
Analysis of multiple forms of nuclear factor I in human and murine cell lines. 总被引:10,自引:4,他引:10 下载免费PDF全文
Nuclear factor I (NFI) is a group of related site-specific DNA-binding proteins that function in adenovirus DNA replication and cellular RNA metabolism. We have measured both the levels and forms of NFI that interact with a well-characterized 26-base-pair NFI-binding site. Five different NFI-DNA complexes were seen in HeLa nuclear extracts by using a gel mobility shift (GMS) assay. In addition, at least six forms of NFI were shown to cross-link directly to DNA by using a UV cross-linking assay. The distinct GMS complexes detected were composed of different subspecies of NFI polypeptides as assayed by UV cross-linking. Different murine cell lines possessed varying levels and forms of NFI binding activity, as judged by nitrocellulose filter binding and GMS assays. The growth state of NIH 3T3 cells affected both the types of NFI-DNA complexes seen in a GMS assay and the forms of the protein detected by UV cross-linking. 相似文献
17.
Alice Barbarin Paule Séité Julie Godet Souheyla Bensalma Jean-Marc Muller Corinne Chadéneau 《Biochemical and biophysical research communications》2014
An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression. 相似文献
18.
Regulation of neurabin I interaction with protein phosphatase 1 by phosphorylation. 总被引:10,自引:0,他引:10
T McAvoy P B Allen H Obaishi H Nakanishi Y Takai P Greengard A C Nairn H C Hemmings 《Biochemistry》1999,38(39):12943-12949
Neurabin I is a brain-specific actin-binding protein. Here we show that neurabin I binds protein phosphatase 1 (PP1) and inhibits PP1 activity. Neurabin I interacted with PP1alpha in an overlay assay, in yeast two-hybrid interaction analysis, and in coprecipitation and co-immunoprecipitation experiments. Neurabin I also copurified with both the alpha and gamma isoforms of PP1. A glutathione S-transferase (GST)-neurabin I fusion protein (residues 318-661) containing the putative PP1 binding domain (residues 456-460) inhibited PP1 activity (K(i) = 2.7 +/- 1.2 nM). This fusion protein was also rapidly phosphorylated in vitro by PKA (K(m) = 6 microM) to a stoichiomtry of 1 mol/mol. The phosphorylated residue was identified as serine 461 by HPLC-MS analysis of a tryptic digest. Phosphorylation of GST-neurabin I (residues 318-661) by PKA significantly reduced its binding to PP1 by overlay and by glutathione-Sepharose coprecipitation assays. A 35-fold decrease in inhibitory potency was also observed using a S461E mutant, which mimics phosphorylation of S461. These findings identify a signaling mechanism involving the regulation of PP1 activity and localization mediated by the cAMP pathway. 相似文献
19.
Receptor-induced phosphorylation by mammary-derived growth factor 1 in mammary epithelial cell lines. 总被引:1,自引:0,他引:1
M Bano P Worland W R Kidwell M E Lippman R B Dickson 《The Journal of biological chemistry》1992,267(15):10389-10392
Previous work has shown that a mammary-derived growth factor (MDGF1), a human milk-derived, acidic, 62-kDa, N-glycosylated growth factor binds to cell surface receptors and stimulates proliferation of mammary epithelial cells. An 18-amino acid N-terminal partial sequence of the factor did not show any homology to other known growth factors or proteins. Using polyclonal antiserum raised against the synthetic peptide, we demonstrated that conditioned medium prepared from human breast cancer cell lines contains the factor. The antibody could adsorb the biological activity of the factor present in the conditioned medium. Earlier experiments on receptor cross-linking indicated that the receptor was approximately 120-140 kDa. Since tyrosine phosphorylation plays a crucial role in cell proliferation and cell transformation, experiments were conducted to find out whether MDGF1 induces the appearance of phosphotyrosine in MDGF1-receptor-positive MDA-MB 468, MCF-7, and 184A1N4 cell lines compared to receptor-negative lines. Western blot analysis using monoclonal antiphosphotyrosine indicated that MDGF1 induces phosphotyrosine in a 180-185-kDa protein in MDGF1 receptor-positive cell lines. Phosphorylation was not blocked and phosphorylated proteins were not immunoprecipitated by an antibody directed against the binding site of the EGF receptor. Cell membrane fractionation demonstrated that phosphorylation induced by MDGF1 was membrane-associated. The nature of this 180-185-kDa protein and its possible relationship to the MDGF1 receptor are under investigation. 相似文献