首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The submandibular glands of male C57BL/6J mice were studied cytologically and chemically at the following ages (months): 1–1.5, 6–8, 12–13, 28–32. The relative proportion of granular convoluted tubules (GCT) as well as the size and content of secretion granules of GCT cells, progressively increased throughout the first year of life. Correspondingly, the concentration within the glands of two GCT cell products, epidermal growth factor (EGF) and protease, also steadily increased. In senescent glands, GCTs formed relatively less of the gland parenchyma and were composed of shorter cells with reduced amounts of secretory granules. The concentration of EGF was reduced to 17% of its peak value at one year, while protease activity declined to 50% of its peak value. These morphologic and chemical findings imply a functional impairment in submandibular glands of the mouse with senescence.  相似文献   

2.
The cellular and subcellular localization of epidermal growth factor in the submandibular glands of male and female adult mice was established by immunoperoxidase techniques. In light microscopic preparations epidermal growth factor was found exclusively in the granular convoluted tubules of the gland. The intensity of staining for epidermal growth factor varied from cell to cell, and some cells apparently were negative. The pattern of staining was similar in the glands of male and female mice; however, the granular convoluted tubules are androgen-responsive, and thus more extensive and composed of larger cells in males. In thin sections epidermal growth factor was most heavily concentrated in the secretion granules of the granular convoluted tubule cells. Within a given cell there was variation in intensity of staining of individual secretion granules, with some granules appearing minimally reactive or negative. The only other cell component with deposits of reaction product was the ribosomes.  相似文献   

3.
Routine histological and indirect immunofluorescence techniques were used to examine the histological details of changes in the distribution of epidermal growth factor (EGF) in the submandibular salivary glands of mice during secretion. Comparisons were made bewteen glands of normal mice and those of mice given one of a number of secretagogues at various times prior to sampling. Normal submandibular salivary glands in male mice had an extensive system of convoluted granular tubules (CGT), the cells of which contained EGF. When adrenaline of alpha-phenylephrine was administered, the CGT cells degranulated, and there was a concomitant loss of intracellular EGF-positive immunofluorescence. The excretory ducts were engorged with immunofluorescent material, indicating secretion of EGF into saliva, while the ductal cells themselves remained EGF-negative. The degranulation response could be blocked by phentolamine, but not by propranolol, and no changes in EGF distribution followed the administration of pilocarpine. It was concluded that EGF is secreted, at least partly into the saliva, following an alpha-adrenergic response, and that this occurs with degranulation of the cells of the CGT.  相似文献   

4.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

5.
Mouse submandibular glands show an androgen-dependent sexual dimorphism, reflected in higher concentrations in males than in females of bioactive peptides, such as epidermal growth factor (EGF), nerve growth factor, and renin in the cells of the granular convoluted tubules (GCT). Biochemical studies have demonstrated androgen receptors in submandibular gland and other androgen-responsive organs in mouse. We have determined the cellular localization of these receptors using steroid autoradiography. Fifteen adult gonadectomized male mice were injected intravenously with 0.13 microgram or 0.26 microgram [3H]-dihydrotestosterone (SA 135 Ci/mM); some animals were pre-treated with cyclocytidine to stimulate secretion by GCT cells. Animals were killed 15 min, 1, 2, or 3 hr after isotope injection. Steroid autoradiographs were prepared, and some were stained immunocytochemically for EGF. Of the different cell types of submandibular gland, the acinar cells most frequently and intensely concentrated [3H]-DHT; GCT cells also concentrated the hormone, as did a small number of striated duct cells. In the other major salivary glands, the only cells that concentrated the androgen were interlobular striated duct cells in sublingual gland. In prostate, anterior pituitary, and brain a large number of cells concentrated androgen, as has been previously reported. Androgen binding by the GCT cells was a predictable finding, since androgen-induced alterations in composition and form of these cells are well documented. The intense androgen concentration by the acinar cells was an unexpected finding and suggests a hitherto unknown androgen regulation of these cells. An incidental finding was intense concentration of [3H]-DHT in the nuclei of the endothelial cells of the post-capillary venules of the cervical lymph nodes.  相似文献   

6.
Summary Circulating androgens are known to effect a sexual dimorphism of the submandibular gland and kidney of the mouse. Enzyme histocytochemical differences that correlate with these structural changes have been the subject of much study, especially in the kidney. In the present study, emphasis was placed on the hypogonadic effects of diabetes mellitus on the submandibular gland and kidney of C57BL/KsJ db/db inbred mice with an autosomal recessive disease resembling maturity onset human diabetes mellitus. These glands of adult diabetic mice of both sexes were compared with those of unafflicted heterozygous littermates. The mitochondrial cytochrome oxidase and peroxisomal and cytoplasmic catalase were studied in their submandibular glands and kidneys. The parasympathetic innervation of the submandibular glands was studied by a histochemical method for acetylcholinesterase. The extensive differentiation of striated ducts of the submandibular gland into granular tubules in the postpubertal male mouse was readily evident with the cytochrome oxidase procedure. This differentiation resulted in ductal staining patterns characteristic of the sexes. Alteration of these patterns suggested that demasculinization or feminization was occuring in the male diabetic mice and that masculinization or virilization (defeminization) was occurring in the female diabetics. Similarly, in kidney, study of the parietal epithelium of Bowman's capsule revealed feminization in the male diabetics and masculinization in the female diabetics. With the catalase procedure, a dramatic sexual dimorphism was observed in the kidneys of the heterozygous unafflicted mice. Peroxisomal staining of epithelial cells of the proximal convoluted tubules was much more intense in the outer medulla of the male than of the female. In kidneys of the diabetics, the staining patterns again suggested that feminization of the male and masculinization of the female kidneys had occurred. On the other hand, neither a sexual dichotomy nor effects due to diabetes could be observed in the characteristic catalase staining observed in the luminal epithelial cells of submandibular gland distal ducts. The parasympathetic innervation of the submandibular gland, as revealed by the acetylcholinesterase method, was also markedly sexually dimorphic in the unafflicted mice. This was due to the more extensive innervation of the larger granular ducts characteristic of male than of the smaller striated ducts of the female. As a result of diabetes, the innervation and duct size decreased in the submandibular gland of the male, suggesting feminization, whereas they increased in the female suggesting masculinization. These changes were consistent with those observed in submandibular with the cytochrome oxidase procedure. Attempts were made to interrelate all of the enzyme histochemical changes observed in submandibular gland and kidney with the weights of these glands, sex, gonadal weights, diabetic status and urinary protein excretion. Generally, significant differences were recorded which suggested that the feminization of the submandibular gland and kidney in the diabetic male mice, and their masculinization in the female diabetics, were due to the hypogonadism of the disease.This investigation was supported by NIH research grants DE 02668, DE 04730, DE 00014 and RR 05333  相似文献   

7.
Epidermal growth factor (EGF) is a polypeptide originally isolated from the mouse submandibular gland, where it is localized immunocytochemically in cells of the granular convoluted tubules (GCT). cDNAs encoding the precursor of mouse submandibular EGF have been cloned (Scott et al. Science 221:236, 1983; Gray et al. Nature 303:722, 1983). A fragment of one of these clones, pmegf10, containing the EGF coding region, was tritium-labeled by nick-translation and used as a probe for in situ hybridization to EGF mRNA. A specific hybridization signal for EGF mRNA was seen only in mature or developing GCT cells. The intensity of the signal was stronger in glands of intact males than in females or in castrated males. In glands of castrates treated with testosterone, or of intact females treated with triiodothyronine (T3), the signal was comparable to that in intact males. In glands of males treated with T3 the intensity of the signal was stronger than in untreated males. A weak to moderate signal was seen in developing GCT cells of 20-day-old males but not females. Hybridization for 3 days gave a stronger signal than that for 1 day. No signal was seen in either sex at 10 days of age, or in control preparations exposed to labeled DNA of pBR322. The presence of EGF mRNA exclusively in GCT cells provides strong evidence that these cells are the only site of synthesis of EGF in the submandibular gland. In situ hybridization with this cDNA probe will provide a sensitive method to determine possible cellular sites of EGF production outside of the submandibular gland.  相似文献   

8.
The granular convoluted tubule of the mouse submandibular gland contains a wide variety of biologically active proteins, including several kallikreins. The tubule is under multihormonal regulation, and is sexually dimorphic, being larger in males than in females. Correspondingly, levels of its various protein secretory products are more abundant in males than in females. However, isoelectric focussing studies show that the true tissue kallikrein, mK1, is more abundant in the female than in the male submandibular gland. In this study, an antiserum was prepared with restricted immunoreactivity for mouse mK1, and possibly other kallikrein family members of low abundance in the mouse submandibular gland, and used for the immunocytochemical staining of the granular convoluted tubule cells in the submandibular gland of adult male and female mice, by indirect enzyme-labeled and immunogold-labeled antibody methods for light and electron microscopy, respectively. The distribution of immunoreactive tubule cells showed an unusual sexual dimorphism. In males only a few scattered slender tubule cells were strongly stained, while the more typical large tubule cells were only occasionally weakly positive, and many of them were not stained. By contrast, in females slender tubule cells were not seen, and about two thirds of the more typical tubule cells showed moderate to strong immunostaining. Immunoelectron microscopy revealed that immunostaining was confined to the secretion granules in granular convoluted tubule cells in both sexes. The slender tubule cells of males had many strongly stained small apical secretion granules and occasional basal infoldings; in the weakly positive larger more typical tubule cells not all secretion granules were positive, and there was intergranular variation in the intensity of staining of positive granules. In females, although more tubule cells were stained, intergranular variations in staining intensity were also noted. In both sexes, many tubule cells did not contain any secretion granules that showed immunogold labeling for kallikreins. These findings establish that, in contrast to the situation for the majority of granular convoluted tubules proteins, mK1 and possibly other minor kallikrein family members are more abundant in the granular convoluted tubules of female mice, and that there is considerable variation in the content of these kallikreins not only between different tubule cells, but also in individual secretion granules in any given tubule cell in either sex.  相似文献   

9.
The effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on secretion of epidermal growth factor (EGF) from the rat salivary glands was investigated. VIP in doses of 3 X 10(-10) to 3 X 10(-8) mol/kg per h stimulated secretion of saliva and total output of EGF dose-dependently. Acetylcholine also stimulated salivation and output of EGF. VIP in a dose of 3 X 10(-11) to 3 X 10(-10) mol/kg per h enhanced the stimulatory effect of acetylcholine, but this effect disappeared when the dose of VIP was increased. Adrenalectomy decreased acetylcholine stimulated total output of EGF by approximately 50%, but only by 20% when acetylcholine plus VIP was administered. EGF was localized to the convoluted granular tubules in the submandibular gland, whereas EGF could not be detected in the remaining salivary glands. The results suggest that VIP and acetylcholine cooperate in the control of exocrine secretion from the rat salivary glands. The effect of acetylcholine, however, seems to be partly dependent on circulating catecholamines.  相似文献   

10.
The pattern of expression of the simian virus 40 (SV40) T antigen gene and resultant dysplasia were re-examined in a line of transgenic mice in which the T antigen gene was under the control of the SV40 early promoter. We found that T antigen expression in the kidney, and resulting dysplastic lesions, occurred exclusively in the distal convoluted tubules and the ascending limbs of Henle. Epidermal growth factor (EGF) expression in the kidney of normal mice was similarly immunolocalized. The correlation between high EGF immunoreactivity in normal mouse tissues and T antigen expression in the transgenic counterpart was also seen in the choroid plexus epithelium and in the submandibular glands of male mice. T antigen was not found in the submandibular gland of transgenic females. Similarly, EGF was only rarely detected in the normal female submandibular gland. In contrast to the correlation between T antigen expression in the transgenic mice and EGF expression in the corresponding tissues of the normal mice, within the dysplastic lesions of the transgenic mice EGF expression was severely diminished. Adenocarcinomas of the male submandibular gland from another line of transgenic mice that expresses theInt-1 transgene, showed similarly reduced levels of immunostaining for EGF. Thus, reduced expression of EGF might be a general feature of dysplasia and tumorigenesis in those tissues that normally express EGF.  相似文献   

11.
We have previously demonstrated in rats that Chagas' disease affects the salivary glands, by promoting an enlargement of the submandibular gland. In order to further investigate possible functional alterations on infected submandibular glands, the objective of the present study was to analyze epidermal growth factor (EGF) expression on rat submandibular glands during Trypanosoma cruzi infection. Results demonstrated that infected rats presented lower levels of testosterone, and morphological changes in the granular convoluted tubule (GCT) cells of the submandibular glands, along with acinar enlargement and delayed ductal maturation at the developing granular ducts. Immunohistochemistry analysis additionally showed that only few cells immunolabelled with anti-EGF on infected rats during the acute phase of Chagas' disease, while after 64 and 90 days (chronic phase) of infection, EGF expression was similar to non-infected rats. The present findings suggest that at the acute phase of Chagas' disease, lower levels of testosterone may lead to a delayed maturation of GCT, which positively correlates with decreased EGF production by submandibular glands cells.  相似文献   

12.
Presence of insulin or insulin-like protein has been studied in mouse liver, kidneys, lungs, duodenum, jejunum, submandibular and parotid salivary glands, in femoral, diaphragmal and abdominal wall muscles by means of the immunofluorescent method. In order to understand the role of the extrapancreatic insulin for compensation of the insular insufficiency, corresponding organs have been examined in mice with alloxan diabetes. The immunoreactive insulin is proved to be present only in cells of the granular parts of the salivary tubules of the submandibular and striated ducts of the parotid glands. As demonstrates microfluorometry, a relative amount of insulin in the submandibular gland cells is 1.5 times and in the parotid gland cells--2 times as small as in beta-cells of the pancreatic glands. Under alloxan diabetes insulin content in the salivary gland cells decreases by 1.3-1.9 times (in the beta-cells--by 2.7 times). This may designate that the extrapancreatic insulin (or insulin-like protein) participates in compensation of hypoinsulinemia. In mice with alloxan diabetes, immunoreactivity of insulin is also revealed in hepatocytes.  相似文献   

13.
The granular convoluted tubule (GCT) cells of the submandibular glands represent a major production site for epidermal growth factor (EGF). This study investigates EGF production in the submandibular glands in relation to beta-adrenergic stimulation. Rats were treated with isoproterenol (beta-agonist), which caused up to a 400% increase in submandibular tissue weight after 3 weeks. The weight increase coincided with marked morphologic changes, with degranulation and an apparent decrement in the number of the GCT cells. Immunostaining against EGF revealed a reduction in the number of EGF-immunoreactive cells. Concomitantly, the glandular contents of 6-kDa EGF decreased from 12.86+/-3.42 nmol/gland (mean+/-S.E.M.) in controls to 0.26+/-0.03 nmol/gland. EGF mRNA levels, expressed relative to total RNA levels, only tended to be reduced after 3 weeks as judged from RT-PCR and in situ hybridization (ISH). The isoproterenol-treated rats had increased output of EGF in the saliva, but the salivary secretion of protein was also increased. In both glandular tissue and saliva, gel filtration revealed partially processed high molecular weight forms of EGF in the isoproterenol-treated rats. These data indicate that isoproterenol treatment leads to a hyperstimulatory state of the GCT cells, which then causes depletion of the cellular stores of mature EGF, and most likely due to a shortened posttranslational transit, incomplete peptide processing.  相似文献   

14.
Summary Morphological changes in submandibular glands of female mice following ovariectomy were studied morphometrically by light microscopy and ultrastructurally by electron microscopy. The X zone of the adrenal gland was examined in order to assess possible changes that might be expected to occur after ovariectomy.In submandibular glands, 1 to 4 weeks after ovariectomy, no changes were observed in percentages of the acinar, intercalated duct, and granular convoluted tubular areas occupying photomicrographs. However, an increase in the granular content of both intercalated duct and granular convoluted tubular cells was recognized. By contrast, the glandular picture 4 months after ovariectomy changed remarkably, resembling that of the male mouse both morphometrically and in terms of fine structure. In the adrenal cortex of control female mice, the X zone became thinner with aging. As compared with this, the X zone of ovariectomized mice at any time after the operation was thicker than that of controls.These observations suggest that the absence of ovarian hormones in the ovariectomized mouse may lead to prolonged functioning of X zone cells, which in turn may cause masculinization of the submandibular gland.  相似文献   

15.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

16.
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.  相似文献   

17.
Androgen receptor in rat Harderian and submandibular glands   总被引:2,自引:0,他引:2  
Summary Androgens regulate the development and sexual dimorphism of rodent Harderian and submandibular glands. This effect is believed to be mediated by the androgen receptor. Immunohistochemistry and immunoblotting were carried out to study the receptor in normal, castrated and dihydrotestosterone-supplemented rat Harderian and submandibular glands. Immunohistochemically, the most intense nuclear staining was observed in the acinar cells of the submandibular glands, followed by intercalated duct cells. The granular convoluted tubules showed weak immunostaining and the striated ducts were negative. In the Harderian gland, nuclear staining was seen in both type I and II secretory cells. Castration and treatment had no effect on the expression of the androgen receptor protein in either gland. A 110 K androgen receptor signal was detected by immunoblotting in the Harderian gland but not in the submandibular gland. An experiment was designed to explore the possible effect of proteinases on the receptor protein in the homogenate of submandibular gland. Our results demonstrate the cell-specific location of the receptor in Harderian and submandibular glands, and show that the expression of the receptor protein is androgen-independent.  相似文献   

18.
By using an antiserum specific for mouse epidermal growth factor (EGF), only the granular convoluted tubule (GCT) cells revealed immunochemical staining in rat submandibular glands. There was no regular sexual difference in the frequency or size of immunoreactive cells. Extracts of gland contained an antigen which showed a complete cross-reactivity with mouse EGF in radioimmunoassays. The relative amounts of EGF, determined by a heterologous radioimmunoassay, were not significantly different in the glands of rats of the two sexes. Administration of testosterone caused an increase, in both sexes, in the number of GCT cells stained for EGF and in the amount of EGF in the gland. There was no significant sexual differeence in these two parameters after androgen treatment.  相似文献   

19.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

20.
The time of appearance and the pattern of localization of epidermal growth factor (EGF) in submandibular glands of mice was studied during postnatal development immunocytochemically. EGF was first detectable in the granular convoluted tubule (GCT) cells in the glands of males at 20 days of age and of females at 30 days of age. Development of GCT cells containing EGF was rapid in males, approaching adult conditions by 45 days of age. In females EGF- containing GCTs developed more slowly and irregularly, and did not reach adult status by 45 days of age. It is concluded that EGF is restricted during postnatal development to the GCT cells, and that these cells and the distribution of EGF are represented dimorphically from their first appearance in the submandibular glands of both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号