首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.  相似文献   

2.
Summary Specific stress treatments applied to isolated tobacco (Nicotiana tabacum L.) microspores efficiently induced haploid embryo formation in vitro. A heat shock at 33 or 37°C in the presence of sugar, as well as sucrose-starvation at 25°C, resulted in the formation of embryogenic microspores. A combination of both treatments had an additive effect. Under optimal induction conditions all viable microspores in the culture were embryogenic and developed subsequently into pollen embryos by culture at 25°C in a sugar-containing medium, with induction frequencies of more than 70% with respect to the initial microspore population. A high fraction of the early pollen embryos continued their development in vitro, giving rise to haploid plants. In contrast to other available systems for microspore/pollen embryogenesis, the new protocol allows the production of homogeneous populations of embryogenic microspores and early globular embryos in large-scale cultures, without any purification step, and is therefore well suited for biochemical and molecular work.Abbreviations EDTA ethylenediaminetetraacetate - DAPI 4,6-diamidino-2-phenylindole  相似文献   

3.
4.
M. Sun  H. Kieft  C. Zhou  A. nvan Lammeren 《Protoplasma》1999,208(1-4):265-274
Summary This paper describes a procedure in which protoplasts are obtained from microspores and pollen of rapeseed to induce callus formation aided by a feeder cell system with embryogenic microspores. Microspores at late unicellular stage and pollen at early bicellular stage were isolated and precultured for 24 h at 32 °C before enzymatic treatment. Eleven enzymes were tested in various combinations and concentrations. The optimal enzyme combination was 1.0% cellulase, 0.8% pectinase, 0.3% macerozyme, and 0.02% pectolyase, in which 26.3% of the microspores released protoplasts. A successful co-culture system was set up by employing embryogenic microspores as feeder cells. To this end, microspores were cultured in a medium with high osmotic pressure at 32 °C. Up to 37% of the microspores exhibited cell division and embryos developed to the heart-shape stage without changing medium. Microspore protoplasts were cultured in Millicells surrounded by the embryogenic microspores as feeder. In growth-regulator-free medium 14.5% of the protoplasts divided but only formed budding-like multicellular structures. Only after pretreatment with 4 mg of 2,4-dichlorophenoxyacetic acid and 1 mg of naphthaleneacetic acid per liter protoplasts divided and formed microcalli. Pollen tubes or tubelike structures were not observed. The experiments reveal that selection of the specific developmental stage of microspores, which is a prerequisite for microspore embryogenesis, is also important in microspore protoplast culture. Compared to other methods used before, microculture fed with embryogenic microspores has obvious superiority.Abbreviations CPW basic protoplast washing medium according to Power and Chapman - CPW972 CPW basic medium supplemented with 9% mannitol and 7.2% sorbitol - DAPI 4,6-diamidino-2-phenylindole - NLN nutrient medium according to Lichter modified by Pechan and Keller - NLN13 NLN medium supplemented with 13% sucrose - NLNP NLN13 supplemented with 7.2% sorbitol  相似文献   

5.
The ontogeny of early microspore-derived embryo development was followed using three stains. The stain 3,3'-diethyloxadicarbocyanine iodide, which previously had been reported to be specific for mitochondria, was observed also to demonstrate the exine of developing microspores of Brassica napus.It provided high contrast when used in combination with Tinapol 5BM, a stain for cellulosic cell walls, and aided identification of microspores with embryogenic potential. Hoechst 33342, a nuclear stain, alone or in combination with either or both of the other stains, could be used to highlight the nuclear developmental stage of the microspores. This paper describes procedures using these materials for the specific staining of exine, cell wall/intine and nucleus, thereby permitting their fate to be followed during the early phases of microspore-derived embryo development.  相似文献   

6.
The ontogeny of early microspore-derived embryo development was followed using three stains. The stain 3,3'-diethyloxadicarbocyanine iodide, which previously had been reported to be specific for mitochondria, was observed also to demonstrate the exine of developing microspores of Brassica napus. It provided high contrast when used in combination with Tinapol 5 BM, a stain for cellulosic cell walls, and aided identification of microspores with embryogenic potential. Hoechst 33342, a nuclear stain, alone or in combination with either or both of the other stains, could be used to highlight the nuclear developmental stage of the microspores. This paper describes procedures using these materials for the specific staining of exine, cell wall/intine and nucleus, thereby permitting their fate to be followed during the early phases of microspore-derived embryo development.  相似文献   

7.
8.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

9.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

10.
Scanning electron microscopy of microspore embryogenesis inBrassica spp.   总被引:1,自引:0,他引:1  
Scanning electron microscopy was employed to study and compare microspore embryogenesis in vitro with pollen development in planta inBrassica napus andB. oleracea. An exine with its specific pattern had already been formed, when microspores were released from tetrads. During subsequent pollen development, microspores increased in size and continued to strengthen the exine. Upon in vitro culture, all microspores, i.e., embryogenic and nonembryogenic, initially showed the same morphological features. After 24 h in culture, the microspores had increased in size. Thereafter, embryogenesis was indicated in some microspores by two different morphological changes. One featured an expansion in volume of the cell cluster around the germination aperture (type I), the other showed cell cluster volume expansion over the entire microspore surface (type II). Two-thirds of embryogenic microspores in bothB. napus andB. oleracea demonstrated type I development. When followed by fluorescence microscopy, in vitro culture of microspores revealed cultures with a high embryo frequency were those with a high frequency of symmetrical division.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy  相似文献   

11.
Identification of potentially embryogenic microspores in Brassica napus   总被引:1,自引:0,他引:1  
Studies were undertaken with Brassica napus L. cv. Topas to identify buds containing microspores predisposed to embryogenesis in vitro and to investigate bud and microspore development in relation to this process. No significant correlation was found between the final embryo number and bud components. There appears to be a developmental window of less than 8 h duration during which microspores are very likely to form embryos: over 70% of the microspores can undergo division and up to 70% of these can form embryos. Embryos were mainly obtained from late uninuucleate to early binucleate microspores: the former contained mainly a G2 or M phase nucleus located at the microspore periphery and the latter a generative nucleus (associated with the intine) and a vegetative nucleus. Observations indicated that only the vegetative nucleus contributed to embryo formation. The first embryogenic division occurred between 8 and 16 h for uninucleate- and between 8 and 48 h for binucleate-derived embryos.  相似文献   

12.
Brassica napus L. microspores at the late uninucleate to early binucleate stage of development can be induced in vitro to alter their development from pollen to embryo formation. High temperatures or other stress treatments are required to initiate this redirection process. The critical period for induction of microspore embryogenesis is within the first 8 h of temperature-stress imposition. During this period, which precedes the first embryogenic nuclear division, the process regulating the induction and sustainment of microspore embryogenesis is activated. A number of mRNAs and proteins, some of them possibly heat-shock proteins, appear in microspores during the commitment phase of the induction process.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

13.
We partially purified three Nicotiana tabacum L. embryogenic pollen-abundant phosphoproteins (NtEPa to c) which appeared in the cells undergoing a dedifferentiation process from immature pollen grains to embryogenic cells, caused by glutamine-deficiency in vitro. All the NtEPs had a highly conserved N-terminal amino acid sequence. Using degenerate oligonucleotide probes designed from the amino acid sequences, the cDNA for NtEPc was isolated from a cDNA library of pollen cultured in glutamine-free medium The cDNA sequence showed moderate homology with several type-1 copper-binding glycoproteins and with a kind of early nodulin though its function could not be predicted. Expression analysis revealed that the level of mRNA for NtEPc was high during the dedifferentiation and also in the very early period of pollen embryogenesis but it was low in the developmental process of microspores/pollen in anthers, in the in vitro maturation process and both in the stational and logarithmic growth phases of tobacco BY-2 cells. Furthermore, an acidic medium pH, which promoted the induction of dedifferentiation increased the level of mRNA for NtEPc, whereas the presence of 6-benzylaminopurine, which inhibited it, decreased the level. These results suggest that the expression of NtEPc gene is correlated with the dedifferentiation but not with pollen development or cell division.  相似文献   

14.
15.
Pollen cultures as a tool to study plant development.   总被引:1,自引:0,他引:1  
  相似文献   

16.
To gain further insight into the role played by sporophytic anther tissues in the early stages of the androgenic process, we have compared the cytology and ultrastructure of barley embryogenic pollen grains obtained by anther culture with those obtained by isolated-microspore culture. The microspores behaved similarly in both culture systems but ultrastructural studies detected a significant difference: the presence of electron-dense deposits on the intine of embryogenic pollen grains generated by isolated-microspore culture compared to their absence in grains generated by anther culture. To discover the nature of these deposits, we applied proteinase K and EDTA treatments to ultrathin sections. We also subjected the deposits to X-ray microanalysis and found that they contained iron. Anthers and isolated microspores were cultured in media containing different concentrations of iron so as to evaluate the presence of these deposits on the intine. Deposits were not found in anther cultures at any iron concentration used or in microspore cultures when concentrations were lower than 40 mg/L. The Fe deposits on the intine appear to derive from an excess of Fe in the isolated-microspore culture medium which, if allowed to pass through the cell wall, could well be toxic to the embryogenic development of the microspores.  相似文献   

17.
A stress treatment of 32 degrees C for at least 8h was able to change the gametophytic program of the microspore, switching it to embryogenesis in Brassica napus, an interesting model for studying this process in vitro. After induction, some microspores started symmetric divisions and became haploid embryos after a few days, whereas other microspores, not sensitive to induction, followed their original gametophytic development. In this work the distribution and ultrastructural localization of two heat-shock proteins (Hsp70 and Hsp90) throughout key stages before and after embryogenesis induction were studied. Both Hsp proteins are rapidly induced, localizing in the nucleus and the cytoplasm. Immunogold labeling showed changes in the distribution patterns of these proteins, these changes being assessed by a quantitative analysis. Inside the nucleus, Hsp70 was found in association with RNP structures in the interchromatin region and in the nucleolus, whereas nuclear Hsp90 was mostly found in the interchromatin region. For Hsp70, the accumulation after the inductive treatment was accompanied by a reversible translocation from the cytoplasm to the nucleus, in both induced (embryogenic) and noninduced (gametophytic) microspores. However, the translocation was higher in embryogenic microspores, suggesting a possible additional role for Hsp70 in the switch to embryogenesis. In contrast, Hsp90 increase was similar in all microspores, occurring faster than for Hsp70 and suggesting a more specific role for Hsp90 in the stress response. Hsp70 and Hsp90 colocalized in clusters in the cytoplasm and the nucleus, but not in the nucleolus. Results indicated that stress proteins are involved in the process of microspore embryogenesis induction. The differential appearance and distribution of the two proteins and their association at specific stages have been determined between the two systems coexisting in the same culture: embryogenic development (induced cells) and development of gametes (noninduced cells).  相似文献   

18.
Summary The cauliflower mosaic virus 35S (35S-CaMV) promoter, which is generally used as a constitutive promoter in plants, is known to be silent during microspore and pollen development. Here we analyzed whether the 35S-CaMV promoter fused to thegus (-glucuronidase) gene can be used as a marker for early sporophytic development in embryogenic microspore cultures of tobacco andBrassica napus. In microspore culture ofB. napus, the 35S-CaMV promoter remained off from the start of embryogenic culture up to the mid-cotyledonary embryo stage. 35S-CaMV promoter activity was only present in those microspores that initiated sporophytic development, but failed to enter embryogenic development. Similar results were also obtained with shed-microspore cultures of tobacco, in which rapid, direct embryogenesis takes place. In isolated-microspore cultures, in which embryogenesis is delayed, an intermitting period of sporophytic development was observed, characterized by extensive 35S-CaMV promoter activity. Therefore, the 35S-CaMV promoter discriminates between two classes of sporophytic development: it is activated in microspores which change fate from gametophytic into (temporarily) nonembryogenic sporophytic development, whereas the promoter is silent in sporophytic microspores that enter embryogenic development directly. This mirrors our observation that the 35S-CaMV promoter is also silent in young zygotic embryos.  相似文献   

19.
Microspore culture for the purpose of developing doubled haploid plants is routine for numerous plant species; however, the embryo yield is still very low compared with the total available microspore population. The ability to select and isolate highly embryogenic microspores would be desirable for high embryo yield in microspore culture. To maximize the efficiency of canola microspore culture, a combination of bud size selection and microspore fractionation using a Percoll gradient was followed. This approach has consistently given high embryo yields and uniform embryo development. Microspores isolated from buds 1.5 to 4.4 mm in length of Brassica napus genotypes Topas 4079, DH12075, Westar and 0025 formed embryos at different frequencies. The most embryogenic bud size range varied with each cultivar: Topas 4079 3.5–3.9 mm, DH12075 2.0–2.4 mm, and Westar and 0025 2.5–2.9 mm. When the microspores from 2.0 to 2.4 mm buds of DH12075 were carefully layered on top of a discontinuous Percoll gradient of 10, 20 and 40%, and subsequently spun through the Percoll layers by centrifugation, bands were formed containing populations of microspores of uniform developmental stage. The middle layer of the gradient contained the late uninucleate and early binucleate microspores that were the most embryogenic. In addition, the relationship between the bud size, developmental stage of isolated microspores, Percoll gradient concentration and the embryogenic frequency of each cultivar were studied. Optimization of these factors is required for each genotype evaluated.  相似文献   

20.
We have established an efficient method to induce embryo formation from isolated wheat (Triticum aestivum L.) microspores. Culture of excised anthers under starvation and heat shock conditions induced the formation of embryogenic microspores at high frequency in nine Austrian winter wheat genotypes, including cultivars that had been considered as recalcitrant in anther culture. Percoll gradient centrifugation of the mechanically isolated microspores allowed us to obtain homogeneous populations of embryogenic microspores in all genotypes which, after transfer to a rich medium containing immature ovaries for conditioning, divided and produced globular embryos. Thousands of embryos were produced in one petri dish. Many of these embryos developed into plantlets after transfer to a solid medium without ovaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号