首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus isolate, WBG1022, was resistant to penicillin, kanamycin, neomycin, streptomycin, chloramphenicol, trimethoprim, cadmium, and ethidium bromide and harbored plasmids of 34.5, 24.5, 4.4, 3.2, and 2.6 kilobases. The plasmids were transferred in mixed-culture transfer and conjugation experiments. No resistance phenotype was associated with the 2.6-kb plasmid. The 3.2-kb and 4.4-kb plasmids encoded chloramphenicol and streptomycin resistance respectively. The 24.5-kb plasmid, pWBG626, encoded joint resistance to penicillin, kanamycin, neomycin, and ethidium bromide. Resistance to trimethoprim and cadmium were chromosomal. The 34.5-kb plasmid, pWBG661, had no resistance phenotype but was found to be conjugative. It also mobilized the 4.4-kb and 24.5-kb plasmids in WBG1022. Restriction endonuclease analysis of pWBG661 with EcoRI, ClaI, PvuII, and BglII restriction enzymes demonstrated that pWBG661 was identical to two previously isolated S. aureus conjugative plasmids, p WBG620 and pWBG637, that also lack resistance phenotypes.  相似文献   

2.
A multiply resistant Staphylococcus aureus isolate, WBG7410, harbours plasmids of 38, 26, 2.8, 2.4 and 1.9 kb and transfers trimethoprim and kanamycin resistance at high frequencies by conjugation. The transconjugants contained the 38-kb plasmid, pWBG707, and the 2.8-kb plasmid. Plasmid pWBG707 was shown to encode trimethoprim resistance, was conjugative and mobilised at high frequencies the 2.8-kb plasmid which presumably encodes kanamycin resistance. Plasmid pWBG707 was isolated mostly in the open circular form and analysis with EcoRI restriction endonuclease suggests that pWBG707 is a new conjugative plasmid distinct from the other conjugative plasmids reported in S. aureus.  相似文献   

3.
Transformation and fusion of Streptococcus faecalis protoplasts.   总被引:6,自引:2,他引:4       下载免费PDF全文
Nonconjugative plasmids were transferred by protoplast fusion among Streptococcus faecalis strains and from Streptococcus sanguis to S. faecalis. S. faecalis protoplasts were also transformed with several different plasmids, including the Tn917 delivery vehicle pTV1. Transformation was reproducible, but low in frequency (10(-6) transformants per viable protoplast). A new shuttle vector (pAM610), able to replicate in Escherichia coli and S. faecalis, was constructed and transformed into S. faecalis protoplasts. pAM610 was mobilized by the conjugative plasmid pAM beta 1 in matings among S. faecalis strains and from S. sanguis to S. faecalis. Chimeric derivatives of pAM610 were also transformed into S. faecalis.  相似文献   

4.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

5.
6.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

7.
The ability of Staphylococcus epidermidis to transfer antimicrobial resistance to Staphylococcus aureus was tested by mixed culture on filter membranes. Two of six clinical isolates examined were able to transfer resistance to S. aureus strains 879R4RF, RN450RF, and UM1385RF. Subsequent S.aureus transconjugants resulting from matings with S. epidermidis donors were able to serve as donors to other S. aureus strains at similar frequencies. Cell-free and mitomycin C-induced filtrates of donors and transconjugants showed no plaque-forming ability. Addition of DNase I, citrate, EDTA, calcium chloride, and human sera to mating mixes and agar showed no effect on transfer. Nonviable donor cells were unable to transfer resistance and transfer did not occur at 4 degrees C. Cell-to-cell contact was required since transfer did not occur in broth or when filters of donor and recipient, respectively, were placed back-to-back so cells were not in direct contact. Analysis of DNA from S. epidermidis isolate UM899, its subsequent S. aureus transconjugants, and cured derivatives demonstrated that all resistance markers which transferred resided on plasmids. Mating experiments suggested a central role for the gentamicin plasmid pAM899-1 in the transfer process. It is concluded that our results are consistent with a conjugative transfer of resistance from S. epidermidis to S. aureus analogous to plasmid transfer demonstrated in streptococcal species for plasmids such as pAM beta 1. This represents a novel mechanism for gene exchange among staphylococci.  相似文献   

8.
The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.  相似文献   

9.
10.
The fresh leaves and brine of leaves of Thymbra spicata var. spicata (KARAKIZ) were analyzed by hydrodistillation, headspace and GC/MS techniques. The main components were determined as carvacrol, p-cymene, beta-myrcene, gamma-terpinene, a-terpinene and trans-caryophyllene. The essential oil and the main compounds, carvacrol and trans-caryophyllene, have been tested against E. coli, S. epidermidis, B. subtilis, S. aureus, S. typhimurium, K. pneumoniae, P aeruginosa, E. faecalis and C. albicans. While the essential oil and carvacrol showed strong activity against all microorganisms, except P. aeruginosa, trans-caryophyllene showed activity only against C. albicans. The essential oil and carvacrol also showed strong antimycobacterial activity.  相似文献   

11.
The sex pheromone cAM373 of Enterococcus faecalis and the related staph-cAM373 of Staphylococcus aureus were found to correspond to heptapeptides located within the C-termini of the signal sequences of putative prelipoproteins. The deduced mature forms of the lipoproteins share no detectable homology and presumably serve unrelated functions in the cells. The chromosomally encoded genetic determinants for production of the pheromones have been identified and designated camE (encoding cAM373) and camS (encoding staph-cAM373). Truncated and full-length clones of camE were generated in Escherichia coli, in which cAM373 activity was expressed. In E. faecalis, insertional inactivation in the middle of camE had no detectable phenotypic effects on the pheromone system. Establishment of an in frame translation stop codon within the signal sequence resulted in reduction of cAM373 activity to 3% of normal levels. The camS determinant has homologues in Staphylococcus epidermidis, Bacillus subtilis and Listeria monocytogenes; however, corresponding heptapeptides present within those sequences do not resemble staph-cAM373 closely. The particular significance of staph-cAM373 as a potential intergeneric inducer of transfer-proficient genetic elements is discussed.  相似文献   

12.
The aerial parts of Salvia chloroleuca were collected at full flowering stage at Shahrestanak (Tehran province of Iran). The essential oil was isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. Thirty-four components were identified, representing 98.5% of the total oil. beta-Pinene (10.6%), alpha-pinene (9.0%), beta-caryophyllene (9.0%), 1,8-cineole (9.0%) and carvacrol (7.9%) were the main components. The in vitro antimicrobial activity of the essential oil of S. chloroleuca was studied against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger); the disc diffusion method and MIC values indicated that the oil exhibited moderate to high antimicrobial activity.  相似文献   

13.
In mixed cultures of staphylococci a transfer of the resistance to methicillin and penicillinase plasmids as well as tetracycline and chloramphenicol plasmids was investigated. It was shown that the resistance to methicillin was transferred in mixed cultures from one strain of S. aureus to another and from S. epidermidis to S. aureus. In both cases transfer of methicillin resistance required, the presence of penicillinase plasmid in recipient or donor strain. In the case of other markers transmission was independent. Moreover it was shown that the transfer of resistance genes in mixed cultures was mediated by bacteriophage of the serologic group A.  相似文献   

14.
By using plasmid pMB9, penicillinase genes (penP and penI) from both the wild-type and constitutive strains of Bacillus licheniformis 9945A were cloned in EScherichia coli. When a low-copy-number plasmid was used, both wild-type and constitutive penicillinase genes could be transferred into Bacillus subtilis. However, when a high-copy-number plasmid was used, only the genes of the wild type could be transferred. These recombinant plasmids in B. subtilis could all be transferred by the protoplast transformation procedure into B. licheniformis. Transformants of E. coli were resistant to ampicillin (20 micrograms/ml) in spite of the low penicillinase activities (7 U/mg of cells). However, transformants of B. subtilis and B. licheniformis were sensitive to ampicillin (20 micrograms/ml) even in high penicillinase activities (more than 10,000 U/mg of cells). The secretion of penicillinase was rarely observed in E. coli. In contrast, penicillinases secreted from transformants of B. subtilis and B. licheniformis were around 30 and 60% of the total activities, respectively. We took advantage of the plasmids to permit the construction of hetero- and mero-polyploid structures in host cells, and we discuss a regulatory mechanism of penicillinase synthesis in B. licheniformis.  相似文献   

15.
The mobilizable shuttle cloning vectors, pAT18 and pAT19, are composed of: (i) the replication origins of pUC and of the broad-host-range enterococcal plasmid pAM beta 1; (ii) an erythromycin-resistance-encoding gene expressed in Gram- and Gram+ bacteria; (iii) the transfer origin of the IncP plasmid RK2; and (iv) the multiple cloning site and the lacZ alpha reporter gene of pUC18 (pAT18) and pUC19 (pAT19). These 6.6-kb plasmids contain ten unique cloning sites that allow screening of derivatives containing DNA inserts by alpha-complementation in Escherichia coli carrying the lacZ delta M15 deletion, and can be efficiently mobilized by self-transferable IncP plasmids co-resident in the E. coli donors. Plasmids pAT18, pAT19 and recombinant derivatives have been successfully transferred by conjugation from E. coli to Bacillus subtilis, Bacillus thuringiensis, Listeria monocytogenes, Enterococcus faecalis, Lactococcus lactis, and Staphylococcus aureus at frequencies ranging from 10(-6) to 10(-9). The presence of a restriction system in the recipient dramatically affects (by three orders of magnitude) the efficiency of conjugal transfer of these vectors from E. coli to Gram+ bacteria.  相似文献   

16.
The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.  相似文献   

17.
We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated.  相似文献   

18.
Covalently closed circular DNA from five Staphylococcus aureus plasmids has been introduced into Bacillus subtilis. Four of these plasmids (pUB110, pCM194, pSA2100, and pSA0501) have been selected for further study. These plasmids replicate as multicopy autonomous replicons in both Rec+ and Rec- B. subtilis strains. They may be transduced between B. subtilis strains or transformed at a frequency of 10(4) to 10(5) transformants per microgram of DNA. The molecular weights of these plasmids were estimated, and restriction endonuclease cleavage site maps are presented. Evidence is given that pSA2100, an in vivo recombinant of pSA0501 and pCM194 (S. Iord?nescu, J. Bacteriol. 124:597-601, 1975), arose by a fusion of the latter plasmids, possibly by insertion of one element into another as a translocatable element. Genetic information from three other S. aureus plasmids (pK545, pSH2, and pUB101) has also been introduced into B. subtilis, although no covalently closed circular plasmid DNA was recovered.  相似文献   

19.
Clostridium butyricum NCIB 7423 carries two cryptic plasmids, pCB101 (6.05 kbp) and pCB102 (7.8 kbp). Sites for the restriction enzymes EcoRI, EcoRV, HindIII, ClaI and PstI have been found in one or both of these plasmids and their relative positions determined. Restriction fragments from both plasmids have been inserted into a vector plasmid (pJAB1) that is able to replicate in Escherichia coli but not in Bacillus subtilis and the recombinant plasmids have been established in E. coli. A 3.3 kbp Sau3A fragment of pCB101 conferred upon the vector the ability to transform both Rec+ and Rec- strains of B. subtilis. Plasmid pRB1, a representative chimaera carrying only the 3.3 kbp Sau3A fragment of pCB101, was successfully transferred from B. subtilis back to E. coli. Plasmid pRB1 was readily lost from B. subtilis in the absence of selection. This evidence, together with the results of hybridization experiments, suggests that pRB1 is present as a weakly replicating autonomous element in B. subtilis. A recombinant plasmid carrying a 2.0 kbp Sau3A fragment of pCB102 underwent integration into the B. subtilis chromosome.  相似文献   

20.
Staphylococcus epidermidis ATCC 14990 produces a wall-associated glycerol teichoic acid which is chemically identical to the major wall-associated teichoic acid of Bacillus subtilis 168. The S. epidermidis tagF gene was cloned from genomic DNA and sequenced. When introduced on a plasmid vector into B. subtilis 1A486 carrying the conditionally lethal temperature-sensitive mutation tagF1 (rodC1), it expressed an 85-kDa protein which allowed colonies to grow at the restrictive temperature. This showed that the cloned S. epidermidis gene encodes a functional CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase. An amino acid substitution at residue 616 in the recombinant TagF protein eliminated complementation. Unlike B. subtilis, where the tagF gene is part of the tagDEF operon, the tagF gene of S. epidermidis is not linked to any other tag genes. We attempted to disrupt the chromosomal tagF gene in S. epidermidis TU3298 by directed integration of a temperature-sensitive plasmid but this failed, whereas a control plasmid containing the 5' end of tagF on a similarly sized DNA fragment was able to integrate. This suggests that the tagF gene is essential and that the TagF and other enzymes involved in teichoic acid biosynthesis could be targets for new antistaphylococcal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号