首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Using a variety of physico-chemical techniques we have recently characterized three distinct forms of glucocorticoid-receptor complexes present in the cytosol from rat thymus cells incubated with glucocorticoid; the relative proportions of these complexes are dependent on the conditions to which the cells or cytosols are exposed. Two of these complexes correspond to the well established nonactivated and activated receptor forms, while the third has properties consistent with mero-receptor. Based on their differential affinities for DNA- and DEAE-cellulose we have developed a rapid mini-column chromatographic procedure for separating these three forms and have used it to examine the stability of complexes in cytosol preparations. We have found that activated glucocorticoid-receptor complexes from rat thymus cells are relatively unstable under cell-free conditions in that they undergo time-dependent losses in DNA binding and are converted to mero-receptor. In contrast, cytosolic glucocorticoid-receptor complexes prepared from WEHI-7 mouse thymoma cells are remarkably stable under similar conditions. Mixing experiments with equal portions of rat thymus and WEHI-7 cytosol revealed that the difference between the two tissues cannot be accounted for merely by differences in amounts of proteolytic enzymes, since addition of rat thymus cytosol to WEHI-7 cytosol containing activated glucocorticoid-receptor complexes does not result in their conversion to mero-receptor. However, the WEHI-7 cytosol affords considerable protection to activated glucocorticoid-receptor complexes in thymus cytosol. The stabilizing factor from WEHI-7 cytosol is heat stable (survives 100 degrees C for 30 min), insensitive to pH over a wide range (4.0-10.0), and appears to be macromolecular. It does not inhibit activation, and thus appears distinct from the previously described endogenous glucocorticoid receptor stabilizing factor responsible for stabilization of thymocyte receptor binding capacity (Leach et al., J. Biol. Chem. 257: 381-388, 1982). We propose that the factor is an endogenous inhibitor of the protease(s) responsible for mero-receptor formation.  相似文献   

2.
A procedure of chemical crosslinking of intact cells with glutaraldehyde was employed to contribute to the understanding of glucocorticoid receptor structures and their functional states in vivo. Under optimal experimental conditions, glucocorticoid binding sites were found almost equally distributed between cytosolic and nuclear fractions of crosslinked cells. Sedimentation properties of crosslinked receptor complexes in cytosolic and nuclear extracts revealed that these entities were oligomers, which heterogeneously sedimented between 11 and 4S in the presence of 0.3 M NaCl. By anion exchange chromatography, we could establish that these receptor complex oligomers behaved as untransformed forms.  相似文献   

3.
4.
The effect of 20 mM molybdate on the transformation and translocation of glucocorticoid receptors in intact AtT-20 mouse pituitary tumor cells was investigated. To test whether transformation of the receptor was inhibited during in vivo incubations with both molybdate and glucocorticoid, the DEAE cellulose elution profile of extracted receptor was determined. It was found that receptors from both high speed cytosols and nuclear extracts were transformed. To test whether translocation was affected by molybdate, the fraction of glucocorticoid-receptor complexes found in the nucleus was determined. At 37 degrees C, in the absence of molybdate, 55-60% of the glucocorticoid receptor complexes were in the nuclear compartment. Molybdate did not effect the magnitude of nuclear translocation. Control studies suggested that the agent entered the cells, however. Cold exposure (0 degrees C) reduced nuclear translocation to 20-25%. It is concluded that in vivo, either molybdate is not able to interact with the receptor or transformation in vivo is not mediated by the same molybdate-sensitive mechanisms currently being studied using broken cell-preparations.  相似文献   

5.
Rat liver cytosolic glucocorticoid receptor labelled with [3H] dexamethasone and stabilized with molybdate was bound to heparin-ultrogel and eluted with NaCl or heparin as a single peak of radioactivity. After heat exposure of cytosol, two steroid receptor complexes could be separated by NaCl or heparin. Characterization of the two forms was performed by means of affinity towards isolated nuclei, ssucrose gradient centrigugation and gel exclusion high performance liquid chromatography. The results presented here suggest that the two forms eluted from heparin-agarose correspond to the untransformed and transformed states of the glucocorticoid receptor complex. Taken together, these observations argue in favor of heparin-ultrogel as a suitable procedure to study the mechanism of glucocorticoid-receptor transformation.  相似文献   

6.
We have used a DNA-binding/immunoprecipitation assay to analyze the capacity of human glucocorticoid receptor (hGR), generated in rabbit reticulocyte lysates, to bind DNA. In vitro translated hGR was indistinguishable from native hGR, as determined by migration on sodium dodecyl sulfate-polyacrylamide gels, sedimentation on sucrose density gradients, and reactivity with antipeptide antibodies generated against hGR. In addition, cell-free synthesized hGR was capable of specific binding to glucocorticoid response element (GRE)-containing DNA fragments. Using this assay system, we have evaluated the contributions of ligand binding and heat activation to DNA binding by these glucocorticoid receptors. In vitro translated hGR was capable of selective DNA binding even in the absence of glucocorticoid. Treatment with dexamethasone or the antiglucocorticoid RU486 had no additional effect on the DNA-binding capacity when receptor preparations were maintained at 0 C (no activation). In contrast, addition of either ligand or antagonist in combination with a heat activation step promoted DNA binding by approximately 3-fold over that of heat-activated unliganded receptors. Agonist (dexamethasone) was slightly more effective in supporting specific DNA binding than antagonist (RU486). DNA binding by in vitro synthesized GR was blocked by the addition of sodium molybdate to the receptor preparations before steroid addition and thermal activation. Addition of KCl resulted in less DNA binding either due to blockage of DNA-receptor complex formation or disruption of the complexes. The specificity of DNA binding by cell-free synthesized hGR was analyzed further by examining the abilities of various DNAs to compete for binding to a naturally occurring GRE found in the mouse mammary tumor virus-long terminal repeat. Oligonucleotides containing the consensus GRE were the most efficient competitors, and fragments containing regulatory sequences from glucocorticoid-repressible genes were somewhat competitive, whereas single stranded oligonucleotides were unable to compete for mouse mammary tumor virus-long terminal repeat DNA binding, except when competitor was present at extremely high concentrations. Together these studies indicate that hGR synthesized in rabbit reticulocyte lysates displays many of the same properties, including GRE-specific DNA binding, observed for glucocorticoid receptor present in cytosolic extracts of mammalian cells and tissues. Similarities between the effects of dexamethasone and RU486 suggest that the antiglucocorticoid properties of RU486 do not occur at the level of specific DNA binding.  相似文献   

7.
Stability-, equilibrium- and kinetic binding parameters, transformation rate and sedimentation properties of liver cytosol glucocorticoid receptor from insulin-treated rats were studied. 40% elevation of cytosolic glucocorticoid binding and a lower affinity of the receptor for ligand were observed in hypoglycemic rats as compared to the controls. A small but significant decrease of [3H]triamcinolone acetonide-receptor complexes association rate and an increase of dissociation rate were also found. The rate and the extent of activation of the complexes from insulin-treated rats were somewhat higher compared to the controls, and the complexes from both groups showed higher affinity for the nuclei isolated from insulin-treated animals. Mixing experiments suggested that insulin treatment lead to alterations at the level of both the receptor protein and the nuclear binding sites. Sedimentation properties of transformed and untransformed receptor remained unchanged upon insulin treatment. The physiological relevance of the data was confirmed by hypoglycemia-related stimulation of tyrosine aminotransferase induction by dexamethasone.  相似文献   

8.
We have identified an endogenous regulator of the glucocorticoid receptor following fractionation of dialyzed rat liver cytosol on DEAE-cellulose. The macromolecular regulator, purified approximately 20-fold as judged by Lowry-reactive material, inhibits activation of glucocorticoid-receptor complexes when assayed by DNA-cellulose binding and by chromatography on DEAE-cellulose minicolumns. In addition the active DEAE-cellulose fraction stabilizes the unoccupied glucocorticoid receptor against heat inactivation. Evidence is presented that the observed inhibition of activation by the active DEAE-cellulose fraction is not due to concentration of cytosolic proteases or RNA. The inhibitory molecule in the active fraction is not stable to heating at 90 degrees C (15 min) and is partially inactivated at 45 degrees C (15-60 min).  相似文献   

9.
We have investigated the physiochemical characteristics of trypsin-treated, molybdate-stabilized glucocorticoid-receptor complexes from rat liver in the presence of 10 mM sodium molybdate by high performance ion-exchange chromatography, high performance size-exclusion chromatography, and sedimentation analysis. Trypsin treatment was performed under conditions previously reported to degrade the monomeric Mr approximately 94,000 steroid-binding protein to an Mr approximately 27,000 ligand-binding entity (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865). Also in the presence of molybdate, an Mr approximately 27,000 steroid-binding fragment was obtained by limited trypsinization. However, no major differences in the tested physicochemical parameters were seen when trypsin-treated glucocorticoid-receptor complexes were compared with crude cytosolic complexes. Furthermore, the Mr approximately 27,000 steroid-binding fragment generated in the presence of molybdate could be immunoprecipitated by antibodies specific for the glucocorticoid receptor-associated Mr approximately 90,000 heat shock protein. These results provide direct evidence for an interaction of the Mr approximately 90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor, known to correspond to the C-terminal third of the receptor protein.  相似文献   

10.
Chemical crosslinking of glucocorticoid-receptor complexes to associated components in living cells was performed by the use of formaldehyde. Glucocorticoid binding sites were predominantly located in nuclei, and could not be efficiently extracted by 0.3 M NaCl. Sonication was found to cause the release of about 40% of nuclear receptor complexes. By sucrose density gradient centrifugation of soluble extracts from nuclear sonicates, crosslinked receptor complexes were found in oligomeric forms under high salt conditions. Treatment of these extracts with hydrolytic enzymes showed that DNA and RNA were associated with crosslinked receptor complexes.  相似文献   

11.
Effects of aurintricarboxylic acid (ATA) were examined on the DNA binding properties of rat liver glucocorticoid-receptor complex. The DNA-cellulose binding capacity of the glucocorticoid-receptor complex was completely abolished by a pretreatment of receptor preparation with 0.1-0.5 mM ATA at 4 degrees C. The half-maximal inhibition (i.d.50) in the DNA binding of [3H]triamcinolone acetonide-receptor complex [( 3H]TARc) was observed at 130- and 40 microM ATA depending upon whether the inhibitor was added prior to or following the receptor activation. The entire DNA-cellulose bound [3H]TARc could be extracted in a concentration-dependent manner by incubation with 2-100 microns ATA. The [3H]TARc remained intact under the above conditions, the receptor in both control and ATA-treated preparations sedimented in the same region in salt-containing 5-20% sucrose gradients. The action of ATA appeared to be on the receptor and not on DNA-cellulose. The DNA-binding capacity of ATA-treated receptor preparations could be recovered upon exhaustive dialysis. The treatment with ATA did not appear to change the ionic behavior of heat activated GRc; the receptor in both control and the ATA-treated preparations showed similar elution profiles. Therefore, ATA appears to alter the binding to and dissociation of glucocorticoid-receptor complex from DNA. The use of ATA should offer a good chemical probe for analysis of the DNA binding domain(s) of the glucocorticoid receptor.  相似文献   

12.
We have studied the effects of p-nitrobenzenesulfonyl fluoride, 4-fluorosulfonyl-1-hydroxy-2-naphtoic acid, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and tetranitromethane on the glucocorticoid receptor from rabbit liver. Our results show that all tyrosine modifying reagents inhibit the binding of [3H]dexamethasone to the receptor. Equilibrium binding experiments revealed that only 4-fluorosulfonyl-1-hydroxy-2-naphtoic acid is a competitive inhibitor while the other chemical probes decrease the concentration of binding sites. Transformation of glucocorticoid-receptor complexes was markedly reduced when heat treatment was performed in the presence of tyrosyl-directed reagents. Taken together, these results indicate for the first time that critical tyrosyl moieties may be involved in both hormone binding and transformation of the glucocorticoid receptor.  相似文献   

13.
Summary and future perspectives Studies with proteinase inhibitors have shown that these reagents have potent effects on many properties (including binding, inactivation, degradation, and transformation) of the cytosolic glucocorticoid-receptor. Future studies to determine the influence of these inhibitors on purified receptors and in reconstituted systems should prove particularly useful in elucidating the mechanism(s) of proteinase inhibitor action. Such studies should not only clarify the chemical relationship between proteinase inhibitors and the glucocorticoid receptor(s), but should also provide insight into the basic biochemical nature of steroid binding, inactivation, degradation and transformation. If proteinase inhibitors are shown to exert certain effects by depressing the action of specific enzymes (or other receptor modifying factors), these inhibitors should be helpful in further characterizing and purifying these receptor modifying molecules. On the other hand, if the inhibitors are found to directly interact with the glucocorticoid receptor, such an interaction could prove useful in purifying the receptor (such as using inhibitor-linked affinity columns) as well as characterizing specific chemical groups on the receptor. It should be noted that since proteinase inhibitors affect several properties of the glucocorticoid receptor, it is possible that more than one mechanism of inhibitor action may be revealed.While proteinase inhibitors have clearly been shown to alter glucocorticoid receptor properties in vitro, their effect on receptor function in vivo is largely unexplored. Such studies could prove extremely valuable in determining ways of regulating glucocorticoid hormone action in both experimental and possibly clinical situations. It should also be emphasized that until the effects of proteinase inhibitors on steroid receptor properties in vivo are understood, caution must be used in crediting proteinase inhibitor effects in vivo to their ability to hinder proteinase action (since biological alterations could also be due to steroid receptor modulation).  相似文献   

14.
Unpurified rat liver glucocorticoid-receptor complexes within cytosol show a distinct binding preference for double-stranded DNA over single-stranded DNA; the binding to Escherichia coli rRNA is negligible. Extensive purification of the receptor abolishes its ability to distinguish among DNAs of different secondary structure and the affinity of the purified receptor toward RNA is greatly enhanced, reaching 30–50% of that of DNA. The purification effect is reversible: after cytosol addition to purified receptor preparation the binding preference restores. NaCl does not mimic the effect of cytosol. The flow-through fraction of a phosphocellulose column retains the ability of crude cytosol to produce selective decrease in the receptor binding to single-stranded DNA. This effect may also be observed by using two types of DNA-cellulose bearing double-stranded or denatured DNA, pretreated with crude cytosol. Additionally, pretreatment of immobilized DNA with even low cytosol concentrations has been shown to markedly enhance receptor binding, although this enhancement was lacking specificity with respect to DNA secondary structure. The nature of cytosolic active principle and some possible regulatory implications are discussed.  相似文献   

15.
Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.  相似文献   

16.
The structure of estrogen-receptor complexes recovered in cytosolic extracts of MCF-7 cells treated with hormone at 2°C was probed by chemical crosslinking of intact cells and sample analysis with four monoclonal anti-estrogen receptor antibodies. When MCF-7 cells were treated with either glutaraldehyde or dithiobis(succinimidyl propionate), cytosoluble estrogen-receptor complexes consisted of two major forms sedimenting as 4 S monomers and 8–9 S salt-resistant oligomers. By high salt sucrose density gradient centrifugation, we could observe that the four monoclonal anti-estrogen receptor antibodies bound different forms of receptor complexes from crosslinked cells. While H222 and H226 antibodies could interact with any form we detected, the D75 and D547 monoclonals could only recognize those showing sedimentation coefficients lower than 7 S. When cytosolic extracts from [35S]-methionine-labeled cells were subjected to immunoprecipitation with H222 and D75 anti-estrogen receptor antibodies, electrophoretic analysis of material extracted from immunoprecipitates revealed the presence of 65 kDa estrogen receptors. If extracts were prepared from crosslinked cells, instead, two more components with estimated molecular masses of 220 and 100 kDa were specifically immunoprecipitated by the H222 antibody, whereas only the 100 kDa component and the estrogen receptor were found in immunoprecipitates obtained with the D75 monoclonal. When estrogen-receptor complexes were immunopurified from extracts prepared after cells had been crosslinked with dithiobis(succinimidyl propionate), and the oligomers were dissociated by treatment with β-mercaptoethanol, electrophoretic analysis of our samples showed that only the 65 kDa estrogen receptor and a 50 kDa protein were selectively immunoprecipitated by anti-estrogen receptor antibodies. We concluded that the structures of cytosoluble estrogen-receptor complexes in MCF-7 cells treated with hormone at 2°C, include oligomeric forms which contain a 50 kDa non-steroid binding protein.  相似文献   

17.
We have examined the influence of urea on the properties of the rat liver glucocorticoid receptor (GR). A 1-h incubation of hepatic cytosol with 1-3 M urea at 0 or at 23 degrees C caused a progressive decrease in the steroid binding efficiency of GR. Urea treatment of cytosol incubated with 20 nM [3H]triamcinolone acetonide caused transformation of glucocorticoid-receptor complexes (GRc) and resulted in an increase in the binding of GRc to DNA-cellulose and ATP-Sepharose. The transforming effect was maximal with 2.5 M urea at 0 degrees C for 1 h, and it caused a shift in the rate of sedimentation of the 9 S untransformed GRc to a 4 S form, similar to that observed upon incubation of the cytosol GRc at 23 degrees C. This 9 to 4 S transformation could also be observed in the presence of Na2MoO4. The Stokes radii of the GRc eluted from a Bio-Gel-A-0.5m agarose column were determined to be 5.9 and 4.9 nm in the absence and presence of 2.5 M urea. The aqueous two-phase partitioning analysis revealed a significant change in surface properties of GR following urea treatment; the observed partition coefficient values (cpm upper phase/bottom phase) were 0.022, 0.208, and 0.60 for GRc, GRc + 23 degrees C, and GRc + 2.5 M urea, respectively. Furthermore, the urea treatment rendered the GRc less negatively charged, forcing their appearance in the flow-through fractions of a DEAE-Sephacel column. These results suggest that urea is a potent in vitro modulator of the physicochemical behavior of GR, influencing both the steroid binding and the process of receptor transformation.  相似文献   

18.
1. Cadmium (Cd2+) administered in vivo induced a 40% reduction of rat liver glucocorticoid receptor (GR) capacity and inhibition of glucocorticoid-receptor complexes binding to mouse mammary tumor virus (MMTV) DNA fragment containing GR consensus sequence. 2. The effect of Cd2+ on the GR binding activity can be reversed with DTT, suggesting Cd2+ interaction with thiol groups. 3. Cd(2+)-related GR modification seems to be mediated by Cd2+ binding to cytoplasmic components included in the regulation of the receptor function, although the direct binding of the metal to the receptor thiols could not be ruled out.  相似文献   

19.
Exposure of Reuber hepatoma cells (RHC) to 30 and 300 fM human rIL-1 (hurIL-1) for 4 h significantly decreased cytosolic glucocorticoid binding. Scatchard analysis indicated that the 30 and 300 fM doses of hurIL-1 significantly decreased the Bmax (maximum number of available binding sites), but did not alter the Kd (affinity of the glucocorticoid receptor for ligand). The decrease in cytosolic glucocorticoid binding, expressed relative to cytosol protein, did not result from increased intracellular protein in hurIL-1-treated RHC. In addition, the receptor binding reaction in RHC treated with 300 fM hurIL-1 could be resolved only by computer application of a three-parameter model. Sucrose density gradient ultracentrifugation analysis confirmed significantly less untransformed (8 to 10S) receptor-ligand complexes in hurIL-1-treated RHC, which is biologically significant because hurIL-1 (300 fM) also inhibited the glucocorticoid induction of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). Altered transformation of the receptor-ligand complex, a possible mechanism of action for hurIL-1-mediated inhibition of PEPCK induction, was examined. However, receptor transformation, verified by in vitro activation by high salt (0.3 M KCl) of glucocorticoid receptor-ligand complexes and subsequent sucrose density gradient ultracentrifugation analysis, was not affected by hurIL-1. Furthermore, cytoplasmic glucocorticoid binding, determined in intact cell dexamethasone uptake experiments, was decreased in hurIL-1-treated RHC. The decrease in cytoplasmic glucocorticoid binding was reflected subsequently in decreased nuclear binding. The results support our hypothesis that, during acute infection and inflammation, mediators alter metabolic pathways in the liver by interfering with glucocorticoid action.  相似文献   

20.
This investigation was undertaken 1) to determine whether the increased glucocorticoid-receptor binding activities, observed in hypertrophied plantaris muscles, are associated with a reduced ability to undergo receptor activation and 2) to examine whether glucocorticoid-receptor complexes in hypertrophied muscles undergo a shift in the relative distribution of the two thermally activated receptor forms (termed binder II and corticosteroid binder IB) to a distribution that is found in slow-twitch or heart muscle types. Plantaris muscles of female adrenalectomized rats, enlarged by surgical removal of synergists, were 60% heavier and had higher glucocorticoid cytosol binding (125 +/- 14 vs. 79 +/- 8 fmol/mg protein) than these muscles of controls. Activation, which was quantitated by the ability of the steroid-receptor complex to bind to DNA, was similar in overloaded and control muscles (57 +/- 2 vs. 62 +/- 4%). Diethylaminoethyl-cellulose chromatography of activated receptors showed approximately 16% of the radioactivity appearing as binder II and 38% as binder IB in both hypertrophied and control muscles. These results show that although enlarged plantaris muscles are undergoing certain fast- to slow-twitch biochemical transformations, the activated glucocorticoid-receptor distribution does not shift to that observed in slow fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号