首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion of substituted benzoates into 1,2-cis-dihydroxycyclohexa-3,5-diene carboxylic acids (cis-diols) was effected by using Escherichia coli and Pseudomonas recombinants carrying the xylXYZ genes originating from the Pseudomonas putida mt-2 TOL plasmid, thus producing toluate-1,2-dioxygenase. Pseudomonas oleovorans GPo12 recombinants readily produced meta- and para-substituted cis-diols, but were limited in their oxidation of ortho-substituted substrates.  相似文献   

2.
The biotransformation of 6,6-dimethylfulvene [5-(1-methylethylidene)-1,3-cyclopentadiene], a nonaromatic C(inf5) carbocyclic analog of isopropylbenzene, was examined by using Pseudomonas putida RE213, a Tn5-generated dihydrodiol-accumulating mutant of the isopropylbenzene-degrading strain P. putida RE204. 6,6-Dimethylfulvene was converted to a single chiral product identified as (+)-(1R,2S)-cis-1,2-dihydroxy-5-(1-methylethylidene)-3-cyclopentene. This isopropylbenzene 2,3-dioxygenase-catalyzed transformation demonstrates the potential of bacterial arene dioxygenases for the direct conversion of cyclopentadienylidene compounds to homochiral C(inf5) carbocyclic cis-diols for use in enantiocontrolled organic syntheses.  相似文献   

3.
Toluene dioxygenase (TDO) catalyzes asymmetric cis-dihydroxylations of aromatic compounds. Pseudomonas putida KT2442 (pSPM01) harboring TDO genes could effectively biotransform a wide-range of aromatic substrates into their cis-diols products. In shake-flask culture, approximately 2.7gl(-1) benzene cis-diols, 8.8gl(-1) toluene cis-diols and 6.0gl(-1) chlorobenzene cis-diols were obtained from the biotransformation process. Furthermore, vgb gene encoding Vitreoscilla hemoglobin protein (VHb) which enhances oxygen microbial utilization rate under low dissolved oxygen concentration was integrated into P. putida KT2442 genome. The oxidation ability of the mutant strain P. putida KTOY02 (pSPM01) harboring TDO gene was increased in the presence of VHb protein. As a result, approximately 3.8, 15.1 or 6.8gl(-1) different cis-diols production was achieved in P. putida KTOY02 (pSPM01) grown in shake-flasks when benzene, toluene or chlorobenzene was used as the substrate. The above results indicate that P. putida KT2442 could be used as a cell factory to biotransform aromatic compounds.  相似文献   

4.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

5.
Catabolism of nonphenolic arenes is frequently initiated by dioxygenases, yielding single isomer products with two adjacent hydroxylated asymmetric centers. The next enzymic reaction dehydrogenates these cyclic cis-diols, with aromatization yielding catechols for ring cleavage. There are two stereochemical questions to answer. (i) To which face of NAD is hydride transferred giving NADH? (ii) Which hydrogen of the arene-cis-diols is donated to NAD? We report the results of 1H nuclear magnetic resonance [1H NMR] experiments for two diol dehydrogenases induced during growth of Pseudomonas putida PaW1(TOL) and JT105 with p-xylene and p-toluate, respectively. per-[2H5]benzoate-1,2-dihydrodiol and per-[2H7]- and specifically [2H]p-toluate-2,3-dihydrodiols were the substrates used to examine this by 1H NMR, as the two protons of the prochiral center (C-4 of the nicotinamide ring) are easily distinguished in the region of 2.6 to 2.7 ppm. We found that with the partially purified dehydrogenases (i) 2H from the (2R) center of per-(1S,2R)-benzoate-1,2-dihydrodiol was donated to the Si-face of NAD to give (4S)-NAD2H; (ii) p-toluate-2,3-diol dehydrogenase also provided exclusively (4S)-NAD2H, but the 2H was transferred from both the 2- and 3-C atoms of (2S,3R)-p-toluate-2,3-dihydrodiol with specifically deuterated species in approximately equal amounts; and (iii) the unexpected lack of stereo- and regioselectivity of p-toluate-2,3-diol dehydrogenase was supported by kinetic isotope effect studies.  相似文献   

6.
Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS   总被引:10,自引:0,他引:10  
A bacterium was isolated from water by enrichment on 2-chlorobenzoate as sole source of carbon and energy. Based on morphological and physiological properties, this microorganism was assigned to the species Pseudomonas cepacia. The organism was designated Pseudomonas cepacia 2CBS. During growth on 2-chlorobenzoate, the chlorine substituent was released quantitatively, and a small amount of 2,3-dihydroxybenzoate accumulated in the culture medium. Mutants of Pseudomonas cepacia 2CBS were induced by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. Some of these mutants produced catechol from 2-chlorobenzoate. Other mutants accumulated the meta-cleavage product of catechol, 2-hydroxy-cis,cis-muconic acid semialdehyde. In crude cell-free extracts of Pseudomonas cepacia 2CBS, an enzyme was detected which catalysed the conversion of 2-chlorobenzoate to catechol. Molecular oxygen, NADH and exogenous Fe2+ were required for activity. Stoichiometric amounts of chloride were released. Experiments with 18O2 revealed that both oxygen atoms in the hydroxyl groups of the product were derived from molecular oxygen. Thus, the enzyme catalysing the conversion of 2-chlorobenzoate was identified as 2-chlorobenzoate 1,2-dioxygenase (1,2-hydroxylating, dehalogenating, decarboxylating). 2-Chlorobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS was shown to be a multicomponent enzyme system. The activities of catechol 2,3-dioxygenase and catechol 1,2-dioxygenase were detected in crude cell-free extracts. The activity of catechol 2,3-dioxygenase was 60 times higher than the activity of catechol 1,2-dioxygenase, indicating that catechol is mainly degraded via meta-cleavage in Pseudomonas cepacia 2CBS. No enzyme was found which converted 2,3-dihydroxybenzoate, suggesting that this compound is a dead-end metabolite of 2-chlorobenzoate catabolism. A pathway for the degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS is proposed.  相似文献   

7.
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.  相似文献   

8.
Abstract A 2,3-dihydroxybiphenyl-1,2-dioxygenase gene has been cloned from chromosomal DNA of Pseudomonas sp. DJ-12 which can grow on biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. Enzymatic and immunochemical properties of the cloned 2,3-dihydroxybiphenyl-1,2-dioxygenase were characterized, and compared with those of P. pseudoalcaligenes KF707, Pseudomonas sp. KKS102, and P. putida OU83. The dioxygenase of Pseudomonas sp. DJ-12 was similar to those of P. pseudoalcaligenes KF707, and Pseudomonas sp. KKS102, but significantly different from that of P. putida OU83 in electrophoretic mobilities on native PAGE and SDS-PAGE. The dioxygenases of Pseudomonas sp. DJ-12 and P. putida OU83 exhibited the highest ring-fission activity to 3-methylcatechol, and those of P. pseudoalcaligenes KF707 and Pseudomonas sp. KKS102 to 2,3-dihydroxybiphenyl among 2,3-dihydroxybiphenyl, catechol, 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol as substrates. 2,3-dihydroxybiphenyl-1,2-dioxygenase of P. pseudoalcaligenes KF707 was immunochemically related to that of Pseudomonas sp. KKS102, but was different from those of Pseudomonas sp. DJ-12 and P. putida OU83.  相似文献   

9.
Pseudomonas putida strain SU83, harbors the pBS311 plasmid coding for the degradation of biphenyl, 2- and 4-chlorbiphenyl, meta- and paratoluylate. The insertional mutants of the plasmid obtained by the transposon Tn5 insertion were isolated. One of the mutants was used for cloning of the biphenyl degradation genes. The plasmid pBS311:: Tn5 DNA was inserted into the BamHI site of the plasmid pBR322 and cloned. 11 recombinants of 354 tested were treated with 0.1% solution of 2,3-dioxybiphenyl. One of them has acquired the yellow colour testifying to conversion of 2,3-dioxyphenyl to "2-hydroxy-6-keto-6-phenylhexa-2,4-diene acid. The recombinant plasmid pBS312 from this clone is 10.5 kb in size, the size of the insert being 6.2 kb. Escherichia coli SU185 cells harbouring pBS312 are able to support metacleavage of 2,3-dioxybiphenyl, 3-methylcatechol and catechol, but not of 4-methylcatechol. The results suggest the cloned fragment to contain a gene for 2,3-dioxybiphenyl-1,2-dioxygenase, the third enzyme for biphenyl catabolism.  相似文献   

10.
Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.  相似文献   

11.
Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9   总被引:1,自引:0,他引:1  
Abstract The aerobic degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9 was studied. Intact cells of Pseudomonas sp. BN9 grown with 2,4-dihydroxybenzoate oxidized 2,4-dihydroxybenzoate but not salicylate. Cell-free extracts of Pseudomonas sp. BN9 converted 2,4-dihydroxybenzoate after the addition of NAD(P)H. A partially purified protein fraction converted 2,4-dihydroxybenzoate with NADH to 1,2,4-trihydroxybenzene. 1,2,4-Trihydroxybenzene was converted by a 1,2-dioxygenase to maleylpyruvate, which was reduced by a NADH-dependent enzyme to 3-oxoadipate. 2,4-Dihydroxybenzoate 1-monooxygenase, 1,2,4-trihydroxybenzene 1,2-dioxygenase and maleylpyruvate reductase were induced in Pseudomonas sp. BN9 after growth with 2,4-dihydroxybenzoate.  相似文献   

12.
Abstract Naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4 and biphenyl dioxygenase from Beijerinckia sp. B8/36 oxidized the aromatic N-heterocycle carbazole to 3-hydroxycarbazole. Toluene dioxygenase from Pseudomonas putida F39/D did not oxidize carbazole. Transformations were carried out by mutant strains which oxidize naphthalene and biphenyl to cis -dihydrodiols, and with a recombinant E. coli strain expressing the structural genes of naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4. 3-Hydroxycarbazole is presumed to result from the dehydration of an unstable cis -dihydrodiol.  相似文献   

13.
The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones.  相似文献   

14.
Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113.  相似文献   

15.
The DNA sequence of a 1.6-kilobase-pair SalI-KpnI Acinetobacter calcoaceticus restriction fragment carrying catA, the structural gene for catechol 1,2-dioxygenase I, was determined. The 933-nucleotide gene encodes a protein product with a deduced molecular weight of 34,351. The similarly sized Pseudomonas clcA gene encodes catechol 1,2-dioxygenase II, an enzyme with relatively broad substrate specificity and relatively low catalytic efficiency. Comparison of the catA and clcA sequences demonstrated their common ancestry and suggested that acquisitions of direct and inverted sequence repetitions of 6 to 10 base pairs were frequent events in their evolutionary divergence. The catechol 1,2-dioxygenases proved to be evolutionarily homologous with the alpha and beta subunits of Pseudomonas protocatechuate 3,4-dioxygenase, and analysis of conserved residues in the intradiol dioxygenases revealed conserved histidyl and tyrosyl residues that are probably involved in the ligation of ferric ion in their active sites.  相似文献   

16.
A minimal replicon of 1.8 kb isolated from a 10-kb plasmid of Pseudomonas savastanoi, pPS10, has been used to obtain a collection of small vectors specific for Pseudomonas (P. savastanoi, P. aeruginosa and P.putida). In addition, shuttle vectors that can be established both in Pseudomonas and Escherichia coli have been constructed by adding a pMB9 replicon. The vectors permit cloning of DNA fragments generated by a variety of restriction enzymes using different antibiotic resistance markers for selection and offer the possibility to screen recombinants by insertional inactivation. This cloning system can be used to establish recombinant plasmids in Pseudomonas either at low or high copy number. pPS10 derivatives are compatible with other Pseudomonas vectors derived from broad-host-range replicons of the incompatibility groups P1, P4/Q and W. Introduction and expression of the iaaMH operon in a P. savastanoi mutant deficient in the production of indoleacetic acid has been achieved using one of these vectors.  相似文献   

17.
Pseudomonas sp. strain P51 is able to use 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene as sole carbon and energy sources. Two gene clusters involved in the degradation of these compounds were identified on a catabolic plasmid, pP51, with a size of 110 kb by using hybridization. They were further characterized by cloning in Escherichia coli, Pseudomonas putida KT2442, and Alcaligenes eutrophus JMP222. Expression studies in these organisms showed that the upper-pathway genes (tcbA and tcbB) code for the conversion of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene to 3,4-dichlorocatechol and 3,4,6-trichlorocatechol, respectively, by means of a dioxygenase system and a dehydrogenase. The lower-pathway genes have the order tcbC-tcbD-tcbE and encode a catechol 1,2-dioxygenase II, a cycloisomerase II, and a hydrolase II, respectively. The combined action of these enzymes degrades 3,4-dichlorocatechol and 3,4,6-trichlorocatechol to a chloromaleylacetic acid. The release of one chlorine atom from 3,4-dichlorocatechol takes place during lactonization of 2,3-dichloromuconic acid.  相似文献   

18.
Bacterial strains expressing toluene and naphthalene dioxygenase were used to examine the sequence of reactions involved in the oxidation of 1,2-dihydronaphthalene. Toluene dioxygenase of Pseudomonas putida F39/D oxidizes 1,2-dihydronaphthalene to (+)-cis-(1S,2R)-dihydroxy-1,2,3,4-tetrahydronaphthalene, (+)-(1R)-hydroxy-1,2-dihydronaphthalene, and (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, naphthalene dioxygenase of Pseudomonas sp. strain NCIB 9816/11 oxidizes 1,2-dihydronaphthalene to the opposite enantiomer, (-)-cis-(1R,2S)-dihydroxy-1,2,3,4-tetrahydronaphthalene and the identical (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. Recombinant Escherichia coli strains expressing the structural genes for toluene and naphthalene dioxygenases confirmed the involvement of these enzymes in the reactions catalyzed by strains F39/D and NCIB 9816/11. 1-Hydroxy-1,2-dihydronaphthalene was not formed by strains expressing naphthalene dioxygenase. These results coupled with time course studies and deuterium labelling experiments indicate that, in addition to direct dioxygenation of the olefin, both enzymes have the ability to desaturate (dehydrogenate) 1,2-dihydronaphthalene to naphthalene, which serves as a substrate for cis dihydroxylation.  相似文献   

19.
A Pseudomonas fluorescens strain designated PFL12 was isolated from soil and water that were contaminated with various chloroaliphatic hydrocarbons. The isolate was able to metabolize 1,2-dichloroethane, 1,1,2-trichloroethane, 1,2-dichloropropane, 2,2-dichloropropane, and trichloroethylene.  相似文献   

20.
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei 'Imperial Carolina') and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 x 10(5) to 23 x 10(5) CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% +/- 12% of all rhizosphere bacteria after 28 days (0.2 x 10(5) to 31 x 10(5) CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% +/- 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号