首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barley lectin is synthesized as a preproprotein with a glycosylated carboxyl-terminal propeptide (CTPP) that is removed before or concomitant with deposition of the mature protein in vacuoles. Expression of a cDNA clone encoding barley lectin in transformed tobacco plants results in the correct processing, maturation, and accumulation of active barley lectin in vacuoles [Wilkins, T.A., Bednarek, S.Y., and Raikhel, N.V. (1990). Plant Cell 2, 301-313]. The glycan of the propeptide is not essential for vacuolar sorting, but may influence the rate of post-translational processing [Wilkins, T.A., Bednarek, S.Y., and Raikhel, N.V. (1990). Plant Cell 2, 301-313]. To investigate the functional role of the CTPP in processing, assembly, and sorting of barley lectin to vacuoles, a mutant barley lectin cDNA clone lacking the 15-amino acid CTPP was prepared. The CTPP deletion mutant of barley lectin was expressed in tobacco protoplasts, suspension-cultured cells, and transgenic plants. In all three systems, the wild-type barley lectin was sorted to vacuoles, whereas the mutant barley lectin was secreted to the incubation media. Therefore, we conclude that the carboxyl-terminal domain of the barley lectin proprotein is necessary for the efficient sorting of this protein to plant cell vacuoles.  相似文献   

2.
Wheat germ agglutinin (WGA) is synthesized as a proprotein with a glycosylated, 15 amino acid, carboxyl-terminal propeptide. This glycopeptide is cleaved from pro-WGA to produce the mature lectin during the transport of WGA to the protein bodies/vacuoles. To study the posttranslational modification of WGA, it would be useful to be able to differentiate between pro-WGA and mature WGA. Therefore, a peptide corresponding to the propeptide of WGA was synthesized (WGA-B 172-186), and an antiserum was raised in rabbits (anti-WGA-B 172-186). Anti-WGA-B 172-186 reacted with pure WGA-B 172-186 and pro-WGA in ELISA. Anti-WGA-B 172-186 was also specific for and readily differentiated between pro-WGA and mature WGA on Western blots. This provided an assay to monitor pro-WGA on Western blots before and after endo-β-N-acetylglucosaminidase H digestion. Using this assay, direct evidence was obtained that the oligosaccharide of pro-WGA is of the high-mannose type.  相似文献   

3.
Concanavalin A (ConA) is a tetrameric lectin which is synthesized in the developing cotyledons of jack bean (Canavalia ensiformis L.) as a glycosylated precursor, pro-concanavalin A (pro-ConA). The processing of pro-ConA involves the excision of a small glycopeptide from the center of the pro-ConA molecule, and the ligation of the two polypeptides. In this paper, we show that pro-ConA is associated with the endoplasmic reticulum/Golgi fraction of the cells, and that the processing of pro-ConA occurs in the protein bodies. Processing is a complex process and different intermediate-sized polypeptides appear at different times during cotyledon development. The ConA-related polypeptides which accumulate during seed development may be the products of alternate processing events or breakdown products of ConA, rather than precursors of ConA. When glycosylation is prevented by tunicamycin, there is very little transport of pro-ConA out of the endoplasmic reticulum/Golgi system to the protein bodies; the unglycosylated pro-ConA which is transported is slowly processed. Tunicamycin does not prevent the transport of canavalin (a protein which is not glycosylated) or the transport and processing of the small amounts of glycosylated pro-ConA synthesized in the presence of the drug. This is, to our knowledge, the first demonstration that the transport of a glycoprotein in plant cells is dependent on the presence of the glycan.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - GlcN glucosamine - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported by a grant from NATO  相似文献   

4.
The biosynthesis and processing of the homodimeric and heterodimeric lectins from the bulbs of garlic (Allium sativum) and ramsons (wild garlic;Allium ursinum) were studied using pulse and pulse-chase labelling experiments on developing bulbs. By combining the results of thein vivo biosynthesis studies and the cDNA cloning of the respective lectins, the sequence of events leading from the primary translation products into the mature lectin polypeptides could be reconstructed. From this it is demonstrated that garlic and ramsons use different schemes of post-translational modifications in order to synthesize apparently similar lectins from totally different precursors. Both the homomeric garlic lectin (ASAII) and its homologue in ramsons (AUAII) are synthesized on the endoplasmic reticulum (ER) as nonglycosylated 13.5 kDa precursors, which, after their transport out of the ER are converted into the mature 12.0 kDa lectin polypeptides by the cleavage of a C-terminal peptide. The heterodimeric garlic lectin ASAI is synthesized on the ER as a single glycosylated precursor of 38 kDa, which after its transport out of the ER undergoes a complex processing which gives rise to two mature lectin subunits of 11.5 and 12.5 kDa. In contrast, both subunits of the heterodimeric ramsons lectin AUAI are synthesized separately on the ER as glycosylated precursors, which after their transport out of the ER are deglycosylated and further processed into the mature lectin polypeptides by the cleavage of a C-terminal peptide.  相似文献   

5.
Proprotein precursors of vacuolar components are transported from the endoplasmic reticulum into vacuoles, where they are proteolytically processed into their mature forms. However, the processing mechanism in plant vacuoles is very obscure. Characterization of a purified processing enzyme is required to determine whether a single enzyme is responsible for processing many vacuolar proteins with a large variability of molecular structure. If this is true, how can it recognize the numerous varieties of processing sites? We have now purified a processing enzyme (Mr = 37,000) from castor bean seeds. Our results show that the purified enzyme can process 3 different proproteins isolated from either the endoplasmic reticulum or transport vesicles in cotyledon cells to produce the mature forms of these proteins which are found at different suborganellar locations in the vacuole: the 2S protein found in the soluble matrix, the 11S globulin found in the insoluble crystalloid and the 51 kDa protein associated with the membrane. Thus a single vacuolar processing enzyme is capable of converting several proprotein precursors into their respective mature forms.  相似文献   

6.
Phytohemagglutinin is a glycoprotein that accumulates in the protein storage vacuoles of bean seeds. The mature glycoprotein has a high-mannose and a complex glycan. We describe here the use of site-directed mutagenesis and expression of the mutated genes in transgenic tobacco to study the role of glycans in intracellular targeting. The reading frame for phytohemagglutinin-L was mutated so that either one or both of the glycosylation signals were disrupted to specifically prevent the attachment of asparagine-linked glycans. Expression of these genes with the beta-phaseolin promoter in the seeds of transgenic tobacco plants showed that phytohemagglutinin-L with only one glycan or without glycans was correctly targeted to the protein storage vacuoles of the seeds. Furthermore, the absence of either the complex glycan or the high-mannose glycan did not alter the processing of the other glycan. On the basis of these results, we propose that the targeting signal of this vacuolar protein is contained in its polypeptide domain and not in its glycans.  相似文献   

7.
The gene encoding the precursor to stinging nettle (Urtica dioica L. ) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism.  相似文献   

8.
J J Pueyo  D C Hunt    M J Chrispeels 《Plant physiology》1993,101(4):1341-1348
Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the alpha-amylases of mammals and insects. This alpha-amylase inhibitor (alpha AI) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M(r)) 15,000 to 18,000. We report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, we found that antibodies to alpha AI recognize large (M(r) 30,000-35,000) polypeptides as well as typical alpha AI processing products (M(r) 15,000-18,000). Alpha AI activity was found in all extracts that had the typical alpha AI processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, we made a mutant alpha AI in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-alpha AI when the gene is expressed in tobacco. When pro-alpha AI was separated from mature alpha AI by gel filtration, pro-alpha AI was found not to have alpha-amylase inhibitory activity. We interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. We suggest that the polypeptide cleavage removes a conformational constraint on the precursor to produce the biochemically active molecule.  相似文献   

9.
A number of proteins that accumulate in vacuoles and protein bodies undergo posttranslational processing at these accumulation sites. These processing steps include proteolytic cleavage (e.g. pea lectin, soybean glycinin, and rice lectin) and the removal of some sugar residues from oligosaccharide side-chains (e.g. bean phytohemagglutinin). Treatment of immature rice embryos with the sodium ionophore monensin slows down the proteolytic processing of the rice lectin precursor (Mr 23,000) to mature rice lectin (Mr 10,000 and 8,000). Treatment of developing bean cotyledons with monensin slows down the removal of peripheral N-acetylglucosamine residues from the oligosaccharide side-chains of phytohemagglutinin. The results are consistent with the interpretation that these processing steps, which occur in vacuoles or protein bodies, are carried out by enzymes with an acidic pH optimum, and that monensin slows down processing by alkalinization of the vacuoles or protein bodies.  相似文献   

10.
Cloning and characterization of root-specific barley lectin   总被引:14,自引:2,他引:12       下载免费PDF全文
  相似文献   

11.
The Hendra virus fusion (F) protein is synthesized as a precursor protein, F(0), which is proteolytically processed to the mature form, F(1) + F(2). Unlike the case for the majority of paramyxovirus F proteins, the processing event is furin independent, does not require the addition of exogenous proteases, is not affected by reductions in intracellular Ca(2+), and is strongly affected by conditions that raise the intracellular pH (C. T. Pager, M. A. Wurth, and R. E. Dutch, J. Virol. 78:9154-9163, 2004). The Hendra virus F protein cytoplasmic tail contains a consensus motif for endocytosis, YXXPhi. To analyze the potential role of endocytosis in the processing and membrane fusion promotion of the Hendra virus F protein, mutation of tyrosine 525 to alanine (Hendra virus F Y525A) or phenylalanine (Hendra virus F Y525F) was performed. The rate of endocytosis of Hendra virus F Y525A was significantly reduced compared to that of the wild-type (wt) F protein, confirming the functional importance of the endocytosis motif. An intermediate level of endocytosis was observed for Hendra virus F Y525F. Surprisingly, dramatic reductions in the rate of proteolytic processing were observed for Hendra virus F Y525A, although initial transport to the cell surface was not affected. The levels of surface expression for both Hendra virus F Y525A and Hendra virus F Y525F were higher than that of the wt protein, and these mutants displayed enhanced syncytium formation. These results suggest that endocytosis is critically important for Hendra virus F protein cleavage, representing a new paradigm for proteolytic processing of paramyxovirus F proteins.  相似文献   

12.
Glycosylation is of importance for the structure and function of proteins. In the case of vitellin (Vt), a ubiquitous protein accumulated into granules as the main yolk protein constituent of oocytes during oogenesis, glycosylation could be of importantance for the folding, processing and transport of the protein to the yolk and also provides a source of carbohydrate during embryogenesis. Vt from the crayfish Cherax quadricarinatus is synthesized as a precursor protein, vitellogenin (Vg), in the hepatopancreas, transferred to the hemolymph, and mobilized into the growing oocyte via receptor-mediated endocytosis. The gene sequence of C. quadricarinatus shows a 2584-amino-acid protein with 10 putative glycosylation sites. In this study a combined approach of lectin immunoblotting, in-gel deglycosylation, and mass spectrometry was used to identify the glycosylation sites and probe the structure of the glycan moieties using C. quadricarinatus Vg as a model system. Three of the consensus sites for N-glycosylation-namely, Asn(152), Asn(160) and Asn(2493)-were glycosylated with the high-mannose glycans, Man(5-9)GlcNAc(2), and the glucose-capped oligosaccharide Glc(1)Man(9)GlcNAc(2).  相似文献   

13.
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同,种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中,醇溶蛋白在粗面内质网合成后形成蛋白质聚集体,直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后,根据各自的分选信号进入特定的运输囊泡,经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中,然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。  相似文献   

14.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

15.
Vesicle transport and processing of the precursor to 2S albumin in pumpkin   总被引:6,自引:0,他引:6  
Cell fractionation of pulse-chase-labeled developing pumpkin cotyledons demonstrated that proprotein precursor to 2S albumin is transported from the endoplasmic reticulum to dense vesicles and then to the vacuoles, in which pro2S albumin is processed to the mature 2S albumin. Immunocytochemical analysis showed that dense vesicles of about 300 nm in diameter mediate the transport of pro2S albumin to the vacuoles.
The primary structure of the precursor (16 578 Da) to pumpkin 2S albumin has been deduced from the nucleotide sequence of an isolated cDNA insert. The presence of a hydrophobic signal peptide at the N-terminus indicates that the precursor is a preproprotein that is converted into pro2S albumin after cleavage of the signal peptide. N-terminal sequencing of the pro2S albumin in the isolated vesicles revealed that the signal peptide is cleaved off co-translationally on the C-terminal side of alanine residue 22 of prepro2S albumin. By contrast, post-translational cleavages occur on the C-terminal sides of asparagine residues 35 and 74, which are conserved among precursors to 2S albumin from different plants. Hydropathy analysis revealed that the two asparagine residues are located in the hydrophilic regions of pro2S albumin. These findings suggest that a vacuolar processing enzyme can recognize exposed asparagine residues on the molecular surface of pro2S albumin and cleave the peptide bond on the C-terminal side of each asparagine residue to produce mature 2S albumin in the vacuoles.  相似文献   

16.
Maturation of barley cysteine endopeptidase B (EPB) in Trichoderma reesei was studied with metabolic in hibitors, Western blotting, and immuno microscopy. The inactive 42-kDa recombinant EPB proprotein, first detected in apical cells, was sequentially processed in a time-dependent manner to a secreted polypeptide of 38.5 kDa, and thereafter, to polypeptides of 37.5, 35.5, and 32 kDa exhibiting enzyme activity both in the hyphae and culture medium. The sizes of the different forms of recombinant EPB were in accordance with molecular masses calculated from the deduced amino acid sequence, assuming cleavage at four putative Kex2p sites present in the 42-kDa proprotein. Both the liquid and the zymogram in-gel activity assays indicated that the 32-kDa enzyme produced in T. reesei in vivo was 2 kDa larger and four times less active than the endogenous EPB. Brefeldin A treatment prevented the last Kex2p processing step of EPB from a 35.5- to a 32-kDa protein. This coincided with a significant increase in the immuno-gold label for EPB and in modified Golgi-like bodies, which suggests that the processing step probably took place in medial Golgi. A 30.5-kDa EPB polypeptide was observed when glycosylation was inhibited by tunicamycin (TM) or when deglycosylation was carried out enzymatically. Deglycosylation increased the enzyme activity twofold, which was also indicated by an increased fluorescence by TM treatment in the zymogram in-gel activity assay. Simultaneous incubation with TM and monensin produced a peptide of 31.5 kDa. Therefore, monensin may inhibit the final processing step of an unglycosylated EPB by an unknown protease in the fungus. In any case, the final recombinant EPB product in Trichoderma differs from the mature endogenous 30-kDa enzyme produced in barley.  相似文献   

17.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

18.
We have previously shown that concanavalin A is synthesized as a glycoprotein precursor that is unable to bind to sugars and is processed through six intermediate forms before assembly of the mature active lectin. Since processing involves removal of the N-glycan, four proteolytic steps and a religation, the precise event that leads to carbohydrate binding activity was not known. We have now purified the glycoprotein precursor from microsomal membranes and show that deglycosylation in vitro is sufficient alone to convert the precursor to an active carbohydrate binding protein. This is the first demonstration of a novel role for N-glycans and N-glycanases in the regulation of protein activity.  相似文献   

19.
Metabolic labeling of immature jackbean cotyledons with 14C-amino acids was used to determine the processing steps involved in the assembly of concanavalin A. Pulse-chase experiments and analyses of immunoprecipitated lectin forms indicated a complex series of events involving seven distinct species. The structural relatedness of all of the intermediate species was confirmed by two-dimensional mapping of 125I-tryptic peptides. An initial glycosylated precursor was deglycosylated and cleaved into smaller polypeptides, which subsequently reannealed over a period of 10-27 h. NH2-terminal sequencing of the abundant precursors confirmed that the intact subunit of concanavalin A was formed by the reannealing of two fragments, since the alignment of residues 1-118 and 119-237 was reversed in the final form of the lectin identified in the chase and the precursor first labeled. When the tissue was pulse-chased in the presence of monensin, processing of the glycosylated precursor was inhibited. The weak bases NH4Cl and chloroquine were without effect. Immunocytochemical studies showed that monensin treatment caused the accumulation of immunoreactive material at the cell surface and indicated that the ionophore had induced the secretion of a component normally destined for deposition within the protein bodies. Consideration of the tertiary structure of the glycosylated precursor and mature lectin showed that the entire series of processing events could occur without significant refolding of the initial translational product. Proteolytic events included removal of a peptide from the surface of the precursor molecule that connected the NH2- and COOH-termini of the mature protein. This processing activated the carbohydrate-binding activity of the lectin. The chase data suggest the occurrence of a simultaneous cleavage and formation of a peptide bond, raising the possibility that annealment of the fragments to give rise to the mature subunit involves a transpeptidation event rather than cleavage and subsequent religation.  相似文献   

20.
The human LARGE gene encodes a protein with two putative glycosyltransferase domains and is required for the generation of functional alpha-dystroglycan (alpha-DG). Monoclonal antibodies IIH6 and VIA4-1 recognize the functional glycan epitopes of alpha-DG that are necessary for binding to laminin and other ligands. Overexpression of full-length mouse Large generated functionally glycosylated alpha-DG in Pro(-5) Chinese hamster ovary (CHO) cells, and the amount was increased by co-expression of protein:O-mannosyl N-acetylglucosaminyltransferase 1. However, functional alpha-DG represented only a small fraction of the alpha-DG synthesized by CHO cells or expressed from an alpha-DG construct. To identify features of the glycan epitopes induced by Large, the production of functionally glycosylated alpha-DG was investigated in several CHO glycosylation mutants. Mutants with defective transfer of sialic acid (Lec2), galactose (Lec8), or fucose (Lec13) to glycoconjugates, and the Lec15 mutant that cannot synthesize O-mannose glycans, all produced functionally glycosylated alpha-DG upon overexpression of Large. Laminin binding and the alpha-DG glycan epitopes were enhanced in Lec2 and Lec8 cells. In Lec15 cells, functional alpha-DG was increased by co-expression of core 2 N-acetylglucosaminyltransferase 1 with Large. Treatment with N-glycanase markedly reduced functionally glycosylated alpha-DG in Lec2 and Lec8 cells. The combined data provide evidence that Large does not transfer to Gal, Fuc, or sialic acid on alpha-DG nor induce the transfer of these sugars to alpha-DG. In addition, the data suggest that human LARGE may restore functional alpha-DG to muscle cells from patients with defective synthesis of O-mannose glycans via the modification of N-glycans and/or mucin O-glycans on alpha-DG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号