首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of membrane proteins in long-chain fatty acid transport is controversial. The acyl-CoA synthetase fatty acid transport protein-4 (FATP4) has been suggested to facilitate fatty acid uptake indirectly by its enzymatic activity, or directly by transport across the plasma membrane. Here, we investigated the function of FATP4 in basal and insulin mediated fatty acid uptake in C(2)C(12) muscle cells, a model system relevant for fatty acid metabolism. Stable expression of exogenous FATP4 resulted in a twofold higher fatty acyl-CoA synthetase activity, and cellular uptake of oleate was enhanced similarly. Kinetic analysis demonstrated that FATP4 allowed the cells to reach apparent saturation of fatty acid uptake at a twofold higher level compared with control. Short-term treatment with insulin increased fatty acid uptake in line with previous reports. Surprisingly, insulin increased the acyl-CoA synthetase activity of C(2)C(12) cells within minutes. This effect was sensitive to inhibition of insulin signaling by wortmannin. Affinity purified FATP4 prepared from insulin-treated cells showed an enhanced enzyme activity, suggesting it constitutes a novel target of short-term metabolic regulation by insulin. This offers a new mechanistic explanation for the concomitantly observed enhanced fatty acid uptake. FATP4 was colocalized to the endoplasmic reticulum by double immunofluorescence and subcellular fractionation, clearly distinct from the plasma membrane. Importantly, neither differentiation into myotubes nor insulin treatment changed the localization of FATP4. We conclude that FATP4 functions by its intrinsic enzymatic activity. This is in line with the concept that intracellular metabolism plays a significant role in cellular fatty acid uptake.  相似文献   

2.
Although each of the five mammalian long-chain acyl-CoA synthetases (ACSL) can bind saturated and unsaturated fatty acids ranging from 12 to 22 carbons, ACSL4 prefers longer chain polyunsaturated fatty acids. In order to gain a better understanding of ACSL4 fatty acid binding, we based a mutagenesis approach on sequence alignments related to ttLC-FACS crystallized from Thermus thermophilus HB8. Four residues selected for mutagenesis corresponded to residues in ttLC-FACS that comprise the fatty acid binding pocket; the fifth residue aligned with a region thought to be involved in fatty acid selectivity of the Escherichia coli acyl-CoA synthetase, FadD. Changing an amino acid at the entry of the putative fatty acid binding pocket, G401L, resulted in an inactive enzyme. Mutating a residue near the pocket entry, L399M, did not significantly alter enzyme activity, but mutating a residue at the hydrophobic terminus of the pocket, S291Y, altered ACSL4's preference for 20:5 and 22:6 and increased its apparent K(m) for ATP. Mutating a site in a region previously identified as important for fatty acid binding also altered activation of 20:4 and 20:5. These studies suggested that the preference of ACSL4 for long-chain polyunsaturated fatty acids can be modified by altering specific amino acid residues.  相似文献   

3.
The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an approximately 25% reduction in basal (3)H-labeled fatty acid uptake and a complete loss of insulin-stimulated (3)H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.  相似文献   

4.
Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.  相似文献   

5.
Lipopolysaccharides (LPSs) isolated from seven strains of Mesorhizobium were studied for the presence of fatty acids with particular attention for 27-oxooctacosanoic acid and 4-oxo fatty acids. The LPSs from all analysed strains contained various amounts of 27-oxo-28:0 and all of them, with the exception of Mesorhizobium tianshanense, contained also 4-oxo fatty acids (4-oxo-20:0, 4-oxo-i-21:0, 4-oxo-22:0). The group of amide-linked fatty acids consisted of a wide range of 3-hydroxylated and 4-oxo fatty acids whereas all the nonpolar as well as the (omega-1) hydroxylated long-chain acids and the 27-oxo-28:0 fatty acids were ester-linked. The characteristic spectrum of 3-hydroxy fatty acids and presence of 27-OH-28:0 as well as 27-oxo-28:0 acid in LPSs of Mesorhizobium showed that these strains were closely related. Therefore the lipid A fatty acid pattern could be a useful chemotaxonomic marker which helps to isolate the Mesorhizobium group from rhizobium bacteria during the classification process.  相似文献   

6.
7.
Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.  相似文献   

8.
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.  相似文献   

9.
10.
AimAlthough unsaturated fatty acids are assumed to be protective against inflammatory disorders that include a pathway involving Toll-like receptor 4 (TLR4) activation, they might actually be toxic because of their high susceptibility to lipid peroxidation. Here we studied the effects of peroxidized unsaturated fatty acids on the TLR4–nuclear factor (NF)-κB pathway in endothelial cells.Main methodsConfluent cultured endothelial cells from bovine aorta were incubated for 1 h with fatty acids integrated into phosphatidylcholine vesicles. Lipopolysaccharide (LPS) or phosphatidylcholine vesicles without fatty acids were also applied as a positive control or a control for fatty acid groups, respectively. Activation of TLR4 and downstream signaling was assessed by membrane fractionation and Western blotting or immunofluorescent staining.Key findingsIn the same way as LPS, application of sufficiently peroxidized unsaturated fatty acids like oleic acid or docosahexaenoic acid, acutely caused TLR4 translocation to caveolae/raft membranes, leading to activation of NF-κB signaling in endothelial cells. In contrast, saturated fatty acids did not show such effects. Applying well-peroxidized unsaturated fatty acids, but not saturated fatty acids, acutely activates the TLR4/NF-κB pathway.SignificancePeroxidation of unsaturated fatty acid is essential for the acute activation of TLR4 by the fatty acids that follow the same pathway as the activation by LPS. Unsaturated fatty acids have been assumed to be protective against inflammatory disorders, and drugs containing unsaturated fatty acids are now developed and provided. Our result suggests that, for inflammatory disorders involving TLR4 signaling, using unsaturated fatty acids as anti-inflammatory drugs may cause contrary effects.  相似文献   

11.
We developed a live-cell high-throughput assay system using the baker's yeast Saccharomyces cerevisiae to screen for chemical compounds that will inhibit fatty acid uptake. The target for the inhibitors is a mammalian fatty acid transport protein (mmFATP2), which is involved in the fatty acid transport and activation pathway. The mmFATP2 was expressed in a S. cerevisiae mutant strain deficient in Fat1p-dependent fatty acid uptake and reduced in long-chain fatty acid activation, fat1Deltafaa1Delta. To detect fatty acid import, a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-C12), was incubated with cells expressing FATP2 in a 96-well plate. The mmFATP2-dependent C1-BODIPY-C12 uptake was monitored by measuring intracellular C1-BODIPY-C12 fluorescence on a microtiter plate reader, whereas extracellular fluorescence was quenched by a cell viability dye, trypan blue. Using this high-throughput screening method, we demonstrate that the uptake of the fluorescent fatty acid ligand was effectively competed by the natural fatty acid oleate. Inhibition of uptake was also demonstrated to occur when cells were pretreated with sodium azide or Triacsin C. This yeast live-cell-based assay is rapid to execute, inexpensive to implement, and has adequate sensitivity for high-throughput screening. The assay basis and limitations are discussed.  相似文献   

12.

Background

Previous studies have shown that palmitate (PA) can bind specifically and non-specifically to Fe(III) MbCN. The present study has observed PA interaction with physiological states of Fe(II) Mb, and the observations support the hypothesis that Mb may have a potential role in facilitating intracellular fatty acid transport.

Methods

1H NMR spectra measurements of the Mb signal during PA titration show signal changes consistent with specific and non-specific binding.

Results

Palmitate (PA) interacts differently with physiological states of Mb. Deoxy Mb does not interact specifically or non-specifically with PA, while the carbonmonoxy myoglobin (MbCO) interaction with PA decreases the intensity of selective signals and produces a 0.15 ppm upfield shift of the PA methylene peak. The selective signal change upon PA titration provides a basis to determine an apparent PA binding constant, which serves to create a model comparing the competitive PA binding and facilitated fatty acid transport of Mb and fatty acid binding protein (FABP).

Conclusions

Given contrasting PA interaction of ligated vs. unligated Mb, the cellular fatty acid binding protein (FABP) and Mb concentration in the cell, the reported cellular diffusion coefficients, the PA dissociation constants from ligated Mb and FABP, a fatty acid flux model suggests that Mb can compete with FABP transporting cellular fatty acid.

General significance

Under oxygenated conditions and continuous energy demand, Mb dependent fatty acid transport could influence the cell's preference for carbohydrate or fatty acid as a fuel source and regulate fatty acid metabolism.  相似文献   

13.
The fatty acid transport protein Fat1p functions as a component of the long-chain fatty acid transport apparatus in the yeast Saccharomyces cerevisiae. Fat1p has significant homologies to the mammalian fatty acid transport proteins (FATP) and the very long-chain acyl-CoA synthetases (VLACS). In order to further understand the functional roles intrinsic to Fat1p (fatty acid transport and VLACS activities), a series of 16 alleles carrying site-directed mutations within FAT1 were constructed and analyzed. Sites chosen for the construction of amino acid substitutions were based on conservation between Fat1p and the mammalian FATP orthologues and included the ATP/AMP and FATP/VLACS signature motifs. Centromeric and 2 mu plasmids encoding mutant forms of Fat1p were transformed into a yeast strain containing a deletion in FAT1 (fat1Delta). For selected subsets of FAT1 mutant alleles, we observed differences between the wild type and mutants in 1) growth rates when fatty acid synthase was inhibited with 45 microm cerulenin in the presence of 100 microm oleate (C(18:1)), 2) levels of fatty acid import monitored using the accumulation of the fluorescent fatty acid 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-S-indacene-3-dodecanoic acid and [(3)H]oleate, 3) levels of lignoceryl (C(24:0)) CoA synthetase activities, and 4) fatty acid profiles monitored using gas chromatography/mass spectrometry. In most cases, there was a correlation between growth on fatty acid/cerulenin plates, the levels of fatty acid accumulation, very long-chain fatty acyl-CoA synthetase activities, and the fatty acid profiles in the different FAT1 mutants. For several notable exceptions, the fatty acid transport and very long-chain fatty acyl-CoA synthetase activities were distinguishable. The characterization of these novel mutants provides a platform to more completely understand the role of Fat1p in the linkage between fatty acid import and activation to CoA thioesters.  相似文献   

14.
UDP-glucose (UDP-Glc):fatty acid glucosyltransferases catalyze the UDP-Glc-dependent activation of fatty acids as 1-O-acyl-[beta]-glucoses. 1-O-Acyl-[beta]-glucoses act as acyl donors in the biosynthesis of 2,3,4-tri-O-acylglucoses secreted by wild tomato (Lycopersicon pennellii) glandular trichomes. The acyl composition of L. pennellii 2,3,4-tri-O-acylglucoses is dominated by branched short-chain acids (4:0 and 5:0; approximately 65%) and straight and branched medium-chain-length fatty acids (10:0 and 12:0; approximately 35%). Two operationally soluble UDP-Glc:fatty acid glucosyltransferases (I and II) were separated and partially purified from L. pennellii (LA1376) leaves by polyethylene glycol precipitation followed by DEAE-Sepharose and Cibacron Blue 3GA-agarose chromatography. Whereas both transferases possessed similar affinity for UDP-Glc, glucosyltransferase I showed higher specificity toward short-chain fatty acids (4:0) and glucosyltransferase II showed higher specificity toward medium-chain fatty acids (8:0 and 12:0). The overlapping specificity of UDP-Glc:fatty acid glucosyltransferases for 4:0 to 12:0 fatty acid chain lengths suggests that the mechanism of 6:0 to 9:0 exclusion from acyl substituents of 2,3,4-tri-O-acylglucoses is unlikely to be controlled at the level of fatty acid activation. UDP-Glc:fatty acid glucosyltransferases are also present in cultivated tomato (Lycopersicon esculentum), and activities toward 4:0, 8:0, and 12:0 fatty acids do not appear to be primarily epidermal when assayed in interspecific periclinal chimeras.  相似文献   

15.
Fatty acids have been shown to be involved in the development of insulin resistance associated with obesity. We used sucrose loading in rats to analyze changes in fatty acid composition in the progression of obesity and the related metabolic disorder. Although rats fed a sucrose diet for 4 weeks had body weights similar to those of control animals, their visceral fat pads were significantly larger, and serum triglyceride levels were higher; however, neither plasma glucose nor insulin levels were significantly higher. After 20 weeks of sucrose loading, body weight and visceral and subcutaneous fat pads had increased significantly compared with those in control rats. Moreover, plasma glucose, insulin, and triglyceride levels were significantly higher. An analysis of individual fatty acid components in the blood and peripheral tissues demonstrated phase- and tissue-dependent changes. After 20 weeks of sucrose loading, palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9), the major components of monounsaturated fatty acid, showed a ubiquitous increase in plasma and all tissues analyzed. In contrast, linoleic acid (18:2 n-6) and arachidonic acid (20:4 n-6), the major components of polyunsaturated fatty acid in the n-6 family, decreased in plasma and all tissues analyzed. After 4 weeks of sucrose loading, these changes in fatty acid composition were observed only in the liver and plasma and not in fat and muscle. This led us to conclude that elevation of plasma glucose and insulin develop at the late phase of sucrose-induced obesity, when changes in fatty acid composition appear in fat and muscle. Furthermore, changes in fatty acid composition in liver seen after 4 weeks of sucrose loading, when increases in neither plasma glucose nor insulin were detected, suggest that liver may be the initial site of fatty acid imbalance and that aberrations in hepatic fatty acid composition may lead to fatty acid imbalances in other tissues.  相似文献   

16.
Acyl‐CoA and acyl‐acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram‐negative bacteria. However, Gram‐positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn‐glycerol‐3‐phosphate by PlsY using an acyl‐phosphate (acyl‐PO4) intermediate. PlsX generates acyl‐PO4 from the acyl‐ACP end‐products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1‐position and endogenous acyl groups were channeled into the 2‐position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl‐ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP‐dependent fatty acid kinase activity, and the acyl‐PO4 was converted to acyl‐ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.  相似文献   

17.
13种微藻的脂肪酸组成分析   总被引:5,自引:0,他引:5  
王铭  刘然  徐宁  李爱芬  段舜山 《生态科学》2006,25(6):542-544
分析了13种微藻(包括7种绿藻,5种杂色藻和1种红藻)的总脂含量和脂肪酸组成,结果表明,不同门类微藻的脂肪酸组成差异较大:绿藻的脂肪酸组成以C16和C18为主;杂色藻类的脂肪酸组成相近,金藻门含有14:0、16:0、18:1、18:4等特征脂肪酸,三角褐指藻主要的脂肪酸为14:0、16:0、16:1、16:3和20:5,而粉核油球藻的脂肪酸以14:0、16:0、20:5为主;紫球藻的脂肪酸组成以16:0、20:4和20:5为主。在测试的13种微藻中,杜氏盐藻的亚麻酸含量最高,占总脂肪酸的60.9%;等鞭金藻的十八碳四烯酸含量最高,占总脂肪酸的19.6%;紫球藻和粉核油球藻中花生四烯酸与二十碳五烯酸(EPA)含量分别占总脂肪酸的17.1%和20.9%。  相似文献   

18.
Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake.  相似文献   

19.
Leishmania major synthesizes polyunsaturated fatty acids by using Delta6, Delta5 and Delta4 front-end desaturases, which have recently been characterized [Tripodi KE, Buttigliero LV, Altabe SG & Uttaro AD (2006) FEBS J273, 271-280], and two predicted elongases specific for C18 Delta6 and C20 Delta5 polyunsaturated fatty acids, respectively. Trypanosoma brucei and Trypanosoma cruzi lack Delta6 and Delta5 desaturases but contain Delta4 desaturases, implying that trypanosomes use exogenous polyunsaturated fatty acids to produce C22 Delta4 fatty acids. In order to identify putative precursors of these C22 fatty acids and to completely describe the pathways for polyunsaturated fatty acid biosynthesis in trypanosomatids, we have performed a search in the three genomes and identified four different elongase genes in T. brucei, five in T. cruzi and 14 in L. major. After a phylogenetic analysis of the encoded proteins together with elongases from a variety of other organisms, we selected four candidate polyunsaturated fatty acid elongases. Leishmania major CAJ02037, T. brucei AAX69821 and T. cruzi XP_808770 share 57-52% identity, and group together with C20 Delta5 polyunsaturated fatty acid elongases from algae. The predicted activity was corroborated by functional characterization after expression in yeast. T. brucei elongase was also able to elongate Delta8 and Delta11 C20 polyunsaturated fatty acids. L. major CAJ08636, which shares 33% identity with Mortierella alpinaDelta6 elongase, showed a high specificity for C18 Delta6 polyunsaturated fatty acids. In all cases, a preference for n6 polyunsaturated fatty acids was observed. This indicates that L. major has, as predicted, Delta6 and Delta5 elongases and a complete pathway for polyunsaturated fatty acid biosynthesis. Trypanosomes contain only Delta5 elongases, which, together with Delta4 desaturases, allow them to use eicosapentaenoic acid and arachidonic acid, a precursor that is relatively abundant in the host, for C22 polyunsaturated fatty acid biosynthesis.  相似文献   

20.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号