首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of active agents increasing [Ca2+]i in cultivated skeletal myocytes have been investigated. It was shown that, out of the agents such as noradrenaline, carbacholine, caffeine, cyclopiazonic acid, and potassium solution, only the last caused the formation of slow calcium waves in skeletal myocytes. These waves propagated not only near the location of the cell nucleus but also along the whole length of myocytes. It is supposed that this wave process can be related to the modulation of excitation-relaxation processes in skeletal muscles.  相似文献   

2.
The influence of hypokinesia on the content of free Ca2+ and the level of NAD(P)H in myocytes of rat skeletal muscles and myocardium, and microviscosity of myocyte membranes was investigated. It has been found that hypokinesia increased the free Ca2+ content and NAD(P)H level in myocytes of skeletal muscles and myocardium. Alterations of structural-functional properties of membrane that appeared as an increase of membrane fluidity in the regions of lipid bilayer and protein-lipid contact were observed only in skeletal muscles. It was supposed that an increase of calcium cation level in myocytes stimulated the activity of enzymes involved in the apoptosis process that results in the decrease of muscle tissue mass.  相似文献   

3.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

4.
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.  相似文献   

5.
The temperature-dependence of intracellular free calcium ([Ca2+]i) was investigated in indo-1 loaded ventricular myocytes from the rat, a non-hibernator, and from the ground squirrel, a hibernator. The dissociation constant of indo-1 at different temperatures was calibrated both at pH-stat and at α-stat, and the result demonstrated that the α-stat calibration should be preferred. Analysis of the fluorescent image showed a striking increase of [Ca2+]i as well as spontaneous calcium waves in rat cells, indicating an overloaded calcium. In contrast, cardiac myocytes of the ground squirrel were found to keep a constant [Ca2+]i without calcium overload regardless of temperature variation. It is believed that understanding of the mechanisms underlying the intercellular calcium homeostasis of hibemators may lead to solutions of some medical questions.  相似文献   

6.

Background

Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro.

Methods

To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry.

Results

More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes.

Conclusion

The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.  相似文献   

7.
Cardiac microtubule stability is increased in the streptozotocin (STZ) model of type 1 diabetes. Here, we investigate the reason for increased microtubule stability, and the functional consequences of stable microtubule disruption. Ventricular myocytes were isolated from rats at 8–12 weeks after injection of STZ. A 10% increase in microtubule density, but no difference in the ratio of microtubule-associated protein 4 (MAP4) to tubulin was seen in myocytes from STZ rats. Functionally, STZ myocytes showed a tendency for reduced shortening and intracellular Ca2+ ([Ca2+] i ) transient amplitude, and a significant prolongation of time to peak (ttp) shortening and [Ca2+] i . Although microtubules in STZ myocytes were less sensitive to the microtubule disruptor nocodazole (NOC; 33 μM) than control myocytes, we only saw marked functional consequences of microtubule disruption by NOC in myocytes from diabetic animals. NOC increased shortening and [Ca2+] i transient amplitude in STZ myocytes by 45 and 24%, respectively (compared with 4 and 6% in controls). Likewise, NOC decreased ttp shortening and [Ca2+] i only in STZ myocytes, such that these parameters were no longer different between the two groups. In conclusion, stable microtubules in diabetes are not associated with an increase in MAP4, but are functionally relevant to cardiac dysfunction in diabetes, regulating both [Ca2+] i and shortening. Holly Shiels and Anthony O’Connell are equal first authorship.  相似文献   

8.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

9.
Two water-solubleFusarium metabolites, fumonisin B1 (FB1) and moniliformin (MN) were compared for their cytotoxicity in a variety of chicken primary cell cultures. Cardiac and skeletal myocytes and hepatocytes derived from embryos, and splenocytes, macrophages, and chondrocytes derived from 3-to 4-week old chickens were cultured in media containing either FB1 or MN (0 to 1 mM) for 48 hr. The colorimetric tetrazolium cleavage assay was then used for measuring cell survival. FB1 was not toxic to macrophages, hepatocytes, cardiac and skeletal myocytes but toxic to splenocytes and chondrocytes. MN was not toxic to chondrocytes and macrophages, but toxic to splenocytes, cardiac and skeletal myocytes. Median effective concentration (EC50) of MN in skeletal myocytes was 42 µM (fiducial limits: 33 to 50 µM) and in cardiac myocytes was 95 µM (fiducial limits: 84 to 122 µM). Estimated EC50 of FB1 in chondrocytes and splenocytes and EC50 of MN in splenocytes were all greater than 200 µM.  相似文献   

10.
Stimulation of airway myocytes by contractile agents such as acetylcholine (ACh) activates a Ca2+-activated Cl current (IClCa) which may play a key role in calcium homeostasis of airway myocytes and hence in airway reactivity. The aim of the present study was to model IClCa in airway smooth muscle cells using a computerised model previously designed for simulation of cardiac myocyte functioning. Modelling was based on a simple resistor-battery permeation model combined with multiple binding site activation by calcium. In order to validate the model, a combination of equations, used to mimic [Ca2+]i response to ACh stimulation, were incorporated into the model. The results indicate that the model developed in this article accounts for experimental recordings and electrophysiological characteristics of this current in airway smooth muscle cells, with parameter values consistent with those calculated from experimental data. Such a model may thus be used to predict IClCa functioning, though additional experimental data from airway myocytes would be useful to more accurately determine some parameter values of the model.  相似文献   

11.
Several reports have documented that thapsigargin is a potent inhibitor of the SR Ca2+ ATPase isolated from cardiac or skeletal muscle. We have characterized the specificity of this agent in intact rat cardiac myocytes using cells maintained in the whole cell voltage clamp configuration. We have shown that thapsigargin decreases the magnitude of the Ca2+ transient and the twitch by about 80% while it slows the decay rate for these responses. These changes were not accompanied by any alterations in sarcolemmal currents or in the trigger Ca2+ generated by the inward calcium current. Taken together these results reveal that the action of thapsigargin is restricted to the SR Ca2+ ATPase in intact cardiac myocytes. Furthermore, it is demonstrated unambiguously that SR intracellular Ca2+ stores are an absolute requirement for the development of contractile tension in rat heart myocytes. It is shown that thapsigargin is a valuable probe to examine the importance of SR pools of Ca2+ and the role of the Ca2+ ATPase in intact myocytes as well as in genetically altered heart cells.  相似文献   

12.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+-dependent CI(CICa) and K+(KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCaand CICaconductances. Resistance arteries contained a more homogeneous cell population with predominance of CICachannel activation. The relation between KCaand CICaconductances in a given conduit myocyte determines the size of the Vmchange in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+equilibrium potential ( − 90 m V). In resistance myocytes, release of Ca2+from stores activates CICachannels and brings Vmto a value close to the chloride equilibrium potential ( − 20 or − 30 m V) thus favouring opening of Ca2+channels and Ca2+influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

13.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

14.
Ischemic insult to the heart produces myocyte Ca2+ ([Ca2+]i) overload. However, little is known about spatiotemporal changes in [Ca2+]i within the ischemic heart in situ at the cellular level. Using real-time confocal microscopy, we successfully visualized [Ca2+]i dynamics at the border zone on the subepicardial myocardium of the heart 2 h after coronary ligations followed by loading with fluo 3/AM. Three distinct regions were identified in the acute infarcted heart. In intact regions, the myocytes showed spatially uniform Ca2+ transients synchronously to QRS complex in the electrocardiogram. The myocytes at the infarcted regions showed no fluorescence intensity (FI). At the border zones between the intact and infarcted regions, Ca2+ waves emerged sporadically and randomly, instead of Ca2+ transients, at a mean frequency of 11.5 ± 8.5 min/cell with a propagation velocity of 151.0 ± 35.7 m/sec along the longitudinal axis of the individual myocytes. In addition, some myocytes within the border zone exhibited homogeneously high static FI, indicating severe Ca2+ overload. In summary, we provided the first direct evidence of abnormal [Ca2+]i dynamics in acute infarcted hearts at the cellular level. The observed diversity in spatiotemporal [Ca2+]i dynamics at the border zone may contribute to the arrhythmias or contractile failure in acute myocardial infarction.  相似文献   

15.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at −80, −40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately −61 and −22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30–35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute ∼20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   

16.
Li C  Meng Q  Yu X  Jing X  Xu P  Luo D 《PloS one》2012,7(4):e36165

Background

It has been found that gap junction-associated intracellular Ca2+ [Ca2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca2+ signaling, in particular the basal [Ca2+]i activities, is unclear.

Methods and Results

Global and local Ca2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca2+ transients and local Ca2+ sparks in monolayer NRVMs and Ca2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca2+ signal and LY uptake by gap uncouplers, whereas blockade of IP3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca2+ signaling regulation in cardiomyocytes.

Conclusions

These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca2+ signaling in normal ventricular myocytes, in which IP3/IP3 receptor coupling is involved. This finding may provide a novel regulatory pathway for mediation of spontaneous global and local Ca2+ activities in cardiomyocytes.  相似文献   

17.
It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular arrhythmias in post-MI patients. Abnormal Ca2+ handling has been implicated in the genesis of post-MI ventricular arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular myocytes to cellular arrhythmia by stabilizing intracellular Ca2+ cycling. To test this hypothesis, we used a canine model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3 PUFAs (1-4 g/day) groups. Using Ca2+ imaging techniques, we examined the intracellular Ca2+ handling in myocytes isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca2+ waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes. n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3 PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3 PUFA treatment increased beat-to-beat alterations in the amplitude of Ca2+ transients (Ca2+ alternans) in VF- myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca2+ spark frequency and reduced sarcoplasmic reticulum Ca2+ content, indicative of increased activity of ryanodine receptors. Thus, dietary n-3 PUFAs do not alleviate intracellular Ca2+ cycling remodeling in myocytes isolated from post-MI VF+ hearts. Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF- hearts by destabilizing intracellular Ca2+ handling.  相似文献   

18.
We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTRinh-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTRinh-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na+/H+-exchanger (NHE) with amiloride or the Na+/Ca2+-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway.  相似文献   

19.
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm−1 min−1 while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F0) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min−1 to 8.1±2.0 min−1, p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function.  相似文献   

20.
Voltage-gated sodium channels (Nav) consist of a pore-forming α subunit (Navα) associated with β regulatory subunits (Navβ). Adult skeletal myocytes primarily express Nav1.4 channels. We found, however, using neonatal L6E9 myocytes, that myofibers acquire a Nav1.5-cardiac-like phenotype efficiently. Differentiated myotubes elicited faster Nav1.5 currents than those recorded from myoblasts. Unlike myoblasts, INa recorded in myotubes exhibited an accumulation of inactivation after the application of trains of pulses, due to a slower recovery from inactivation. Since Navβ subunits modulate channel gating and pharmacology, the goal of the present work was to study Navβ subunits during myogenesis. All four Navβ (Navβ1-4) isoforms were present in L6E9 myocytes. While Navβ1-3 subunits were up-regulated by myogenesis, Navβ4 subunits were not. These results show that Navβ genes are strongly regulated during muscle differentiation and further support a physiological role for voltage-gated Na+ channels during development and myotube formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号