首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The evolutionary relationships among arthropod hemocyanins and insect hexamerins were investigated. A multiple sequence alignment of 12 hemocyanin and 31 hexamerin subunits was constructed and used for studying sequence conservation and protein phylogeny. Although hexamerins and hemocyanins belong to a highly divergent protein superfamily and only 18 amino acid positions are identical in all the sequences, the core structures of the three protein domains are well conserved. Under the assumption of maximum parsimony, a phylogenetic tree was obtained that matches perfectly the assumed phylogeny of the insect orders. An interesting common clade of the hymenopteran and coleopteran hexamerins was observed. In most insect orders, several paralogous hexamerin subclasses were identified that diversified after the splitting of the major insect orders. The dipteran arylphorin/LSP-1-like hexamerins were subject to closer examination, demonstrating hexamerin gene amplification and gene loss in the brachyceran Diptera. The hexamerin receptors, which belong to the hexamerin/hemocyanin superfamily, diverged early in insect evolution, before the radiation of the winged insects. After the elimination of some rapidly or slowly evolving sequences, a linearized phylogenetic tree of the hexamerins was constructed under the assumption of a molecular clock. The inferred time scale of hexamerin evolution, which dates back to the Carboniferous, agrees with the available paleontological data and reveals some previously unknown divergence times among and within the insect orders. Received: 4 August 1997 / Accepted: 29 October 1997  相似文献   

2.
Evolution of arthropod hemocyanins and insect storage proteins (hexamerins)   总被引:6,自引:2,他引:4  
Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and insect hexamerins (storage proteins) are homologous gene products, although the latter do not bind oxygen and do not possess the copper- binding histidines present in the hemocyanins. An alignment of 19 amino acid sequences of hemocyanin subunits and insect hexamerins was made, based on the conservation of elements of secondary structure observed in X-ray structures of two hemocyanin subunits. The alignment was analyzed using parsimony and neighbor-joining methods. Results provide strong indications for grouping together the sequences of the 2 crustacean hemocyanin subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect hexamerins. Within the insect clade, four methionine- rich proteins, four arylphorins, and two juvenile hormone-suppressible proteins from Lepidoptera, as well as two dipteran proteins, form four separate groups. In the absence of an outgroup sequence, it is not possible to present information about the ancestral state from which these proteins are derived. Although this family of proteins clearly consists of homologous gene products, there remain striking differences in gene organization and site of biosynthesis of the proteins within the cell. Because studies on 18S and 12S rRNA sequences indicate a rather close relationship between insects and crustaceans, we propose that hemocyanin is the ancestral arthropod protein and that insect hexamerins lost their copper-binding capability after divergence of the insects from the crustaceans.   相似文献   

3.
Molecular evolution of the arthropod hemocyanin superfamily   总被引:10,自引:0,他引:10  
Arthropod hemocyanins are members of a protein superfamily that also comprises the arthropod phenoloxidases (tyrosinases), crustacean pseudohemocyanins (cryptocyanins), and insect storage hexamerins. The evolution of these proteins was inferred by neighbor-joining, maximum-parsimony, and maximum-likelihood methods. Monte Carlo shuffling approaches provided evidence against a discernible relationship of the arthropod hemocyanin superfamily and molluscan hemocyanins or nonarthropodan tyrosinases. Within the arthropod hemocyanin superfamily, the phenoloxidase probably emerged early in the (eu-)arthropod stemline and thus form the most likely outgroup. The respiratory hemocyanins evolved from these enzymes before the radiation of the extant euarthropodan subphyla. Due to different functional constraints, replacement rates greatly vary between the clades. Divergence times were thus estimated assuming local molecular clocks using several substitution models. The results were consistent and indicated the separation of the cheliceratan and crustacean hemocyanins close to 600 MYA. The different subunit types of the multihexameric cheliceratan hemocyanin have a rather conservative structure and diversified in the arachnidan stemline between 550 and 450 MYA. By contrast, the separation of the crustacean (malacostracan) hemocyanin subunits probably occurred only about 200 MYA. The nonrespiratory pseudohemocyanins evolved within the Decapoda about 215 MYA. The insect hemocyanins and storage hexamerins emerged independently from the crustacean hemocyanins. The time of divergence of the insect proteins from the malacostracan hemocyanins was estimated to be about 430-440 MYA, providing support for the notion that the Hexapoda evolved from the same crustacean lineage as the Malacostraca.  相似文献   

4.
Hexamerins are large hemolymph-proteins that accumulate during the late larval stages of insects. Hexamerins have emerged from hemocyanin, but have lost the ability to bind oxygen. Hexamerins are mainly considered as storage proteins for non-feeding stages, but may also have other functions, e.g. in cuticle formation, transport and immune response. The genome of the hornworm Manduca sexta harbors six hexamerin genes. Two of them code for arylphorins (Msex2.01690, Msex2.15504) and two genes correspond to a methionine-rich hexamerin (Msex2.10735) and a moderately methionine-rich hexamerin (Msex2.01694), respectively. Two other genes do not correspond to any known hexamerin and distantly resemble the arylphorins (Msex2.01691, Msex2.01693). Five of the six hexamerin genes are clustered within ∼45 kb on scaffold 00023, which shows conserved synteny in various lepidopteran genomes. The methionine-rich hexamerin gene is located at a distinct site. M. sexta and other Lepidoptera have lost the riboflavin-binding hexamerin. With the exception of Msex2.01691, which displays low mRNA levels throughout the life cycle, all hexamerins are most highly expressed during pre-wandering phase of the 5th larval instar of M. sexta, supporting their role as storage proteins. Notably, Msex2.01691 is most highly expressed in the brain, suggesting a divergent function. Phylogenetic analyses showed that hexamerin evolution basically follows insect systematics. Lepidoptera display an unparalleled diversity of hexamerins, which exceeds that of other hexapod orders. In contrast to previous analyses, the lepidopteran hexamerins were found monophyletic. Five distinct types of hexamerins have been identified in this order, which differ in terms of amino acid composition and evolutionary history: i. the arylphorins, which are rich in aromatic amino acids (∼20% phenylalanine and tyrosine), ii. the distantly related arylphorin-like hexamerins, iii. the methionine-rich hexamerins, iv. the moderately methionine rich hexamerins, and v. the riboflavin-binding hexamerins.  相似文献   

5.
Hexamerins are hemolymph-proteins, which are mainly considered as storage proteins for non-feeding stages, and also undertake other roles during insect development and growth, however the characterization of hexamerin proteins in Spodoptera exigua is less understood. In this study five new hexamerin genes were identified and a total seven hexamerin genes were reported in S. exigua. These hexamerins contain the typical domains of hemocyanin at the N-terminal, C-terminal and in the middle of their protein sequences. These genes are mainly expressed in fat body, and the signal peptide sequences at their N-terminal of protein sequences can drive the expressed protein to excrete into hemolymph after synthesis. The phylogenetic analysis and amine acid composition revealed S. exigua express five different types of hexamerins: 1) Storage protein rich in methionine residue (MRSP), 2) Storage protein moderately rich in methionine (MMRSP), 3) Hexamerin with high composition of aromatic amino acids (Arylphorin), 4) Arylphorin-like hexamerin, and 5) Riboflavin-binding hexamerin (RbH). The phylogenetic pattern combined with the comparison of conserved histidine residues in copper binding sites of hexamerins revealed basal position of RbH and the evolutionary pathway in lepidopteran hexamerins. Finally, the induction expression of hexamerins by insecticide, lambda-cyhalothrin, were analyzed, results showed that lambda-cyhalothrin exposure may down-regulate their expression. This study increased the gene number of hexamerin to seven, and reported their expression and structural characterizations, the finding will facilitate the understand of hexamerin in other insects.  相似文献   

6.
In addition to the respiratory copper-containing proteins for which it is named, the arthropod hemocyanin superfamily also includes phenoloxidases and various copperless storage proteins (pseudo-hemocyanins, hexamerins and hexamerin receptors). It had long been assumed that these proteins are restricted to the arthropod phylum. However, in their analysis of the predicted genes in the Ciona intestinalis (Urochordata:Tunicata) genome, Dehal et al. (Science 298:2157–2167) proposed that the sea squirt lacks hemoglobin but uses hemocyanin for oxygen transport. While there are, nevertheless, four hemoglobin genes present in Ciona, we have identified and cloned two cDNA sequences from Ciona that in fact belong to the arthropod hemocyanin superfamily. They encode for proteins of 794 and 775 amino acids, respectively. The amino acids required for oxygen binding and other structural important residues are conserved in these hemocyanin-like proteins. However, phylogenetic analyses and mRNA expression data suggest that the Ciona hemocyanin-like proteins rather act as phenoloxidases, possibly involved in humoral immune response. Nevertheless, the putative Ciona phenoloxidases demonstrate that the hemocyanin superfamily emerged before the Protostomia and Deuterostomia diverged and allow for the first time the unequivocal rooting of the arthropod hemocyanins and related proteins. Phylogenetic analyses using neighbor-joining and Bayesian methods show that the phenoloxidases form the most ancient branch of the arthropod proteins, supporting the idea that respiratory hemocyanins evolved from ancestors with an enzymatic function. The hemocyanins evolved in agreement with the expected phylogeny of the Arthropoda, with the Onychophora diverged first, followed by the Chelicerata and Pancrustacea. The position of the myriapod hemocyanins is not resolved.Abbreviations EST expressed sequence tags Communicated by G. Heldmaier  相似文献   

7.
Hexamerins are large storage proteins of insects in the 500 kDa range that evolved from the copper-containing hemocyanins. Hexamerins have been found at high concentration in the hemolymph of many insect taxa, but have remained unstudied in relatively basal taxa. To obtain more detailed insight about early hexamerin evolution, we have studied hexamerins in stoneflies (Plecoptera). Stoneflies are also the only insects for which a functional hemocyanin is known to co-occur with hexamerins in the hemolymph. Here, we identified hexamerins in five plecopteran species and obtained partial cDNA sequences from Perla marginata (Perlidae), Nemoura sp. (Nemouridae), Taeniopteryx burksi (Taeniopterygidae), Allocapnia vivipara (Capniidae), and Diamphipnopsis samali (Diamphipnoidae). At least four distinct hexamerins are present in P. marginata. The full-length cDNA of one hexamerin subunit was obtained (PmaHex1) that measures 2475 bp and translates into a native polypeptide of 702 amino acids. Phylogenetic analyses showed that the plecopteran hexamerins are monophyletic and positioned at the base of the insect hexamerin tree, probably diverging about 360 million years ago. Within the Plecoptera, distinct hexamerin types evolved before the divergence of the families. Mapping amino acid compositions onto the phylogenetic tree shows that the accumulation of aromatic amino acids (and thus the evolution of "arylphorins") commenced soon after the hexamerins diverged from hemocyanins, but also indicates that hexamerins with distinct amino acid compositions reflect secondary losses of aromatic amino acids.  相似文献   

8.
Origin and evolution of arthropod hemocyanins and related proteins   总被引:1,自引:0,他引:1  
Arthropod hemocyanins are large, multimeric, (n x 6) copper-containing proteins that deliver oxygen in the haemolymph of many chelicerate, crustacean, myriapod, and also possibly some insect species. The arthropod hemocyanins belong to a large protein superfamily that also includes the arthropod phenoloxidases, certain crustacean and insect storage proteins (pseudo-hemocyanins and hexamerins), and the insect hexamerin receptors. Here I summarise the present knowledge of the origin, functional adaptations, and evolution of these proteins. Arthropod and mollusc hemocyanins are, if at all, only distantly related. As early as in the arthropod stem line, the hemocyanins emerged from a phenoloxidase-like enzyme. The evolution of distinct hemocyanin subunits, as well as the formation of multi-hexamers occurred independently within the arthropod subphyla. Hemocyanin subunit evolution is strikingly different in the Chelicerata, Myriapoda and Crustacea. Hemocyanins individually gave rise to two distinct copper-less storage proteins, the insect hexamerins and the crustacean pseudo-hemocyanins (cryptocyanins). The receptor responsible for the uptake of hexamerin by the larval fat body of the insects emerged from a hexamerin-precursor. Molecular phylogenetic analyses show a close relationship of the crustacean and insect proteins, providing strong support for a pancrustacean taxon, while structural data suggest a myriapod-chelicerate clade.  相似文献   

9.
Spider hemocyanin binds ecdysone and 20-OH-ecdysone   总被引:9,自引:0,他引:9  
Fluorescence quenching studies and binding experiments with [(3)H]ecdysone reveal that the respiratory protein, hemocyanin, of the tarantula Eurypelma californicum binds ecdysone. The binding constant for ecdysone ranges between 0.5 and 5 mM, indicating a low affinity binding. However, it is comparable with those found for the ecdysone binding to hexamerins from insects. Based on a comparison of sequences and x-ray structures of arthropodan hemocyanins, we propose an evolutionary conserved hydrophobic pocket in domain 1 of the hemocyanin subunit that may bind ecdysone.  相似文献   

10.
Arthropodan hemocyanins, prophenoloxidases (PPOs), and insect hexamerins form a superfamily of hemolymph proteins that we propose to call the AHPH superfamily. The evolutionary and functional relationships of these proteins are illuminated by a new embryonic hemolymph protein (EHP) that is expressed during early stages of development in the grasshopper embryo. EHP is a 78-kDa soluble protein present initially in the yolk sac content, and later in the embryonic hemolymph. Protein purification and peptide sequencing were used to identify an embryonic cDNA clone coding for EHP. In situ hybridization identifies hemocytes as EHP-expressing cells. As deduced from the cDNA clone, EHP is a secreted protein with two potential glycosylation sites. Sequence analysis defines EHP as a member of the AHPH superfamily. Phylogenetic analyses with all the currently available AHPH proteins, including EHP, were performed to ascertain the evolutionary history of this protein superfamily. We used both the entire protein sequence and each of the three domains present in the AHPH proteins. The phylogenies inferred for each of the domains suggest a mosaic evolution of these protein modules. Phylogenetic and multivariate analyses consistently group EHP with crustacean hemocyanins and, less closely, with insect hexamerins, relative to cheliceratan hemocyanins and PPOs. The grasshopper protein rigorously preserves the residues involved in oxygen binding, oligomerization, and allosteric regulation of the oxygen transport proteins. Although insects were thought not to have hemocyanins, we propose that EHP functions as an oxygen transport or storage protein during embryonic development.   相似文献   

11.

Background  

In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E.  相似文献   

12.

Background  

The chitin biosynthesis pathway starts with trehalose in insects and the main functions of trehalases are hydrolysis of trehalose to glucose. Although insects possess two types, soluble trehalase (Tre-1) and membrane-bound trehalase (Tre-2), very little is known about Tre-2 and the difference in function between Tre-1 and Tre-2.  相似文献   

13.

Background  

There are several evolutionarily unrelated and structurally dissimilar superfamilies of S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTases). A new superfamily (SPOUT) has been recently characterized on a sequence level and three structures of its members (1gz0, 1ipa, and 1k3r) have been solved. However, none of these structures include the cofactor or the substrate. Due to the strong evolutionary divergence and the paucity of experimental information, no confident predictions of protein-ligand and protein-substrate interactions could be made, which hampered the study of sequence-structure-function relationships in the SPOUT superfamily.  相似文献   

14.
Hemolymph Proteins and Molting in Crustaceans and Insects   总被引:1,自引:1,他引:0  
The exoskeleton of crustaceans and insects is formed by cellsof the hypodermis, but several hemolymph proteins contributeto the synthesis of the new exoskeleton. These hemolymph proteinsshare a surprising degree of sequence similarity and are membersof the hemocyanin gene family. Copper-containing prophenoloxidasesof crustaceans and insects are directly involved in cross-linkingand hardening of the exoskeleton during molting and repair.Crustacean cryptocyanin and insect hexamerins lack copper andhave probably evolved from a copper-free product of an earlyhemocyanin gene duplication. These proteins have been implicatedin transport of hormones and phenols, and may be used directlyas structural components of the new exoskeleton. They are synthesizedelsewhere in the body, transported in the hemolymph, and probablytaken up by the hypodermis via specific receptors. Hemocyaninshave some residual phenoloxidase activity, in addition to theirprimary role of supplying oxygen to the metabolizing tissues.Thus multiple members of the hemocyanin gene family play vitalroles during molting, and a molecular phytogeny of these proteinswill contribute to our understanding of the evolution of formand function of these molecules from oxygen transport to molt-relatedactivities. Further studies on the expression of prophenoloxidase,cryptocyanin, hexamerins and hemocyanin, potential marker proteins,may extend our understanding of the relationship between othermolting animals in the proposed clade, Ecdysozoa.  相似文献   

15.

Background  

Cholesterol uptake and transportation during the feeding larval stages are critical processes in insects because they are auxotrophic for exogenous (dietary) cholesterol. The midgut is the main site for cholesterol uptake in many insects. However, the molecular mechanism by which dietary cholesterol is digested and absorbed within the midgut and then released into the hemolymph for transportation to utilization or storage sites is poorly understood. Sterol carrier proteins (SCP), non-specific lipid transfer proteins, have been speculated to be involved in intracellular cholesterol transfer and metabolism in vertebrates. Based on the high degree of homology in the conserved sterol transfer domain to rat and human SCP-2, it is supposed that insect SCP-2 has a parallel function to vertebrate SCP-2.  相似文献   

16.

Background  

Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder characterized by severe neurologic and ophthalmologic abnormalities. Recently the MLIV gene, MCOLN1, has been identified as a new member of the transient receptor potential (TRP) cation channel superfamily. Here we report the cloning and characterization of the mouse homologue, Mcoln1, and report a novel splice variant that is not seen in humans.  相似文献   

17.

Background  

Many insects undergo a period of arrested development, called diapause, to avoid seasonally recurring adverse conditions. Whilst the phenology and endocrinology of insect diapause have been well studied, there has been comparatively little research into the developmental details of diapause. We investigated developmental aspects of diapause in sexually-produced embryos of the pea aphid, Acyrthosiphon pisum.  相似文献   

18.

Background  

Endopolyploidy is developmentally regulated. Presence of endopolyploidy as a result of endoreduplication has been characterized in insects, mammals and plants. The family Orchidaceae is the largest among the flowering plants. Many of the members of the orchid family are commercially micropropagated. Very little has been done to characterize the ploidy variation in different tissues of the orchid plants during development.  相似文献   

19.

Background  

The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown.  相似文献   

20.

Background  

In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号