首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.  相似文献   

2.

Introduction  

Magnetic resonance imaging (MRI) was used to study the hand and wrist in very early rheumatoid arthritis (RA), and the results were compared with early and established disease.  相似文献   

3.
Real-time intelligent pattern recognition algorithm for surface EMG signals   总被引:1,自引:0,他引:1  

Background  

Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements.  相似文献   

4.
Although the orientations of the hand and forearm vary for different wrist rehabilitation protocols, their effect on muscle forces has not been quantified. Physiologic simulators enable a biomechanical evaluation of the joint by recreating functional motions in cadaveric specimens. Control strategies used to actuate joints in physiologic simulators usually employ position or force feedback alone to achieve optimum load distribution across the muscles. After successful tests on a phantom limb, unique combinations of position and force feedback – hybrid control and cascade control – were used to simulate multiple cyclic wrist motions of flexion-extension, radioulnar deviation, dart thrower’s motion, and circumduction using six muscles in ten cadaveric specimens. Low kinematic errors and coefficients of variation of muscle forces were observed for planar and complex wrist motions using both novel control strategies. The effect of gravity was most pronounced when the hand was in the horizontal orientation, resulting in higher extensor forces (p < 0.017) and higher out-of-plane kinematic errors (p < 0.007), as compared to the vertically upward or downward orientations. Muscle forces were also affected by the direction of rotation during circumduction. The peak force of flexor carpi radialis was higher in clockwise circumduction (p = 0.017), while that of flexor carpi ulnaris was higher in anticlockwise circumduction (p = 0.013). Thus, the physiologic wrist simulator accurately replicated cyclic planar and complex motions in cadaveric specimens. Moreover, the dependence of muscle forces on the hand orientation and the direction of circumduction could be vital in the specification of such parameters during wrist rehabilitation.  相似文献   

5.
This experimental study was performed to investigate the effects of hand and knee positions on muscular activity during back extension exercises with the Roman chair. Eighteen asymptomatic male amateur athletes performed four prone back extension exercises with two hand positions (crossed-arms and behind-the-head), and two knee positions (extended knee and 90° flexed knee). Surface electromyography (sEMG) was performed to collect data from the lower trapezius (LT), latissimus dorsi (LD), erector spinae in the T12 paraspinal region (ES-T12), erector spinae at the L3 level (ES-L3), gluteus maximus (GM), and biceps femoris (BF). Two-way repeated analysis of variance with two within-subject factors (two hand positions and two knee positions) was used to determine the significance of differences between the exercise conditions, and which hand and knee positions resulted in greater activation with exercise variation. The root mean square sEMG values were normalized using the maximum voluntary isometric contraction (MVIC) and represented as the % of the maximum EMG (%mEMG). There was no significant interaction between knee and hand positions in the %mEMG data. The results showed that the hand position affected the normalized activation of LT; the behind-the-head position resulted in significantly greater muscle activation than the crossed-arms hand position (P < 0.05). The activations of the LD, ES-T10, ES-L4, and GM were greater in the 90° flexed-knee position compared to the extended-knee position (P < 0.05). Although back extension exercise using the Roman chair has been shown to effectively activate the extensor musculature, our results indicated that changing the knee and hand positions could activate specific muscles differently. To achieve greater activation of trunk extensor muscle during extension exercise with the Roman chair, the flexed-knee position is a useful means of increasing resistance.  相似文献   

6.
This study evaluated the flexion–relaxation phenomenon (FRP) and flexion–relaxation ratios (FR-ratios) using surface electromyography (sEMG) of the cervical extensor muscles of computer workers with and without chronic neck pain, as well as of healthy subjects who were not computer users. This study comprised 60 subjects 20–45 years of age, of which 20 were computer workers with chronic neck pain (CPG), 20 were computer workers without neck pain (NPG), and 20 were control individuals who do not use computers for work and use them less than 4 h/day for other purposes (CG). FRP and FR-ratios were analyzed using sEMG of the cervical extensors. Analysis of FR-ratios showed smaller values in the semispinalis capitis muscles of the two groups of workers compared to the control group. The reference FR-ratio (flexion relaxation ratio [FRR], defined as the maximum activity in 1 s of the re-extension/full flexion sEMG activity) was significantly higher in the computer workers with neck pain compared to the CG (CPG: 3.10, 95% confidence interval [CI95%] 2.50–3.70; NPG: 2.33, CI95% 1.93–2.74; CG: 1.99, CI95% 1.81–2.17; p < 0.001). The FR-ratios and FRR of sEMG in this study suggested that computer use could increase recruitment of the semispinalis capitis during neck extension (concentric and eccentric phases), which could explain our results. These results also suggest that the FR-ratios of the semispinalis may be a potential functional predictive neuromuscular marker of asymptomatic neck musculoskeletal disorders since even asymptomatic computer workers showed altered values. On the other hand, the FRR values of the semispinalis capitis demonstrated a good discriminative ability to detect neck pain, and such results suggested that each FR-ratio could have a different application.  相似文献   

7.

Introduction

Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control.

Methods

Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG).

Results

Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores.

Conclusions

Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration stimulation during motor control exercises is likely to influence motor adaptation and could be considered in the treatment of cLBP. Further work is needed to clearly identify at what levels of the sensorimotor system these gains are achievable.  相似文献   

8.

Background

Swallowing is a continuous process with substantive interdependencies among different muscles, and it plays a significant role in our daily life. The aim of this study was to propose a novel technique based on high-density surface electromyography (HD sEMG) for the evaluation of normal swallowing functions.

Methods

A total of 96 electrodes were placed on the front neck to acquire myoelectric signals from 12 healthy subjects while they were performing different swallowing tasks. HD sEMG energy maps were constructed based on the root mean square values to visualize muscular activities during swallowing. The effects of different volumes, viscosities, and head postures on the normal swallowing process were systemically investigated by using the energy maps.

Results

The results showed that the HD sEMG energy maps could provide detailed spatial and temporal properties of the muscle electrical activity, and visualize the muscle contractions that closely related to the swallowing function. The energy maps also showed that the swallowing time and effort was also explicitly affected by the volume and viscosity of the bolus. The concentration of the muscular activities shifted to the opposite side when the subjects turned their head to either side.

Conclusions

The proposed method could provide an alternative method to physiologically evaluate the dynamic characteristics of normal swallowing and had the advantage of providing a full picture of how different muscle activities cooperate in time and location. The findings from this study suggested that the HD sEMG technique might be a useful tool for fast screening and objective assessment of swallowing disorders or dysphagia.
  相似文献   

9.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   

10.
BackgroundRecovery of hand function after stroke represents the hardest target for clinicians. Robot-assisted therapy has been proved to be effective for hand recovery. Nevertheless, studies aimed to refer patients to the best therapy are missing.MethodsWith the aim to identify which clinical features are predictive for referring to robot-assisted hand therapy, 174 stroke patients were assessed with: Fugl-Meyer Assessment (FMA), Functional Independence Measure (FIM), Reaching Performance Scale (RPS), Box and Block Test (BBT), Modified Ashworth Scale (MAS), Nine Hole Pegboard Test (NHPT). Moreover, patients ability to control the robot with residual force and surface EMG (sEMG) independently, was checked. ROC curves were calculated to determine which of the measures were the predictors of the event.ResultssEMG control (AUC = 0.925) was significantly determined by FMA upper extremity (FMUE) (>24/66) and sensation (>23/24) sections, MAS at Flexor Carpi (<3/4) and total MAS (>4/20). Force control (AUC = 0.928) was correlated only with FMUE (>24/66).ConclusionsFMUE and MAS were the best predictors of preserved ability to control the device by two different modalities. This finding opens the possibility to plan specific therapies aimed at maximizing the highest functional outcome achievable after stroke.  相似文献   

11.

Introduction

Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin’s surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements.

Method

A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain.

Results

The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25–30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm.

Conclusion

Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles).  相似文献   

12.

Purpose

Chronic hand and wrist pain is a common clinical issue for orthopaedic surgeons and rheumatologists. The purpose of this study was 1. To analyze the interobserver agreement of SPECT/CT, MRI, CT, bone scan and plain radiographs in patients with non-specific pain of the hand and wrist, and 2. to assess the diagnostic accuracy of these imaging methods in this selected patient population.

Materials and Methods

Thirty-two consecutive patients with non-specific pain of the hand or wrist were evaluated retrospectively. All patients had been imaged by plain radiographs, planar early-phase imaging (bone scan), late-phase imaging (SPECT/CT including bone scan and CT), and MRI. Two experienced and two inexperienced readers analyzed the images with a standardized read-out protocol. Reading criteria were lesion detection and localisation, type and etiology of the underlying pathology. Diagnostic accuracy and interobserver agreement were determined for all readers and imaging modalities.

Results

The most accurate modality for experienced readers was SPECT/CT (accuracy 77%), followed by MRI (56%). The best performing, though little accurate modality for inexperienced readers was also SPECT/CT (44%), followed by MRI and bone scan (38% each). The interobserver agreement of experienced readers was generally high in SPECT/CT concerning lesion detection (kappa 0.93, MRI 0.72), localisation (kappa 0.91, MRI 0.75) and etiology (kappa 0.85, MRI 0.74), while MRI yielded better results on typification of lesions (kappa 0.75, SPECT/CT 0.69). There was poor agreement between experienced and inexperienced readers in SPECT/CT and MRI.

Conclusions

SPECT/CT proved to be the most helpful imaging modality in patients with non-specific wrist pain. The method was found reliable, providing high interobserver agreement, being outperformed by MRI only concerning the typification of lesions. We believe it is beneficial to integrate SPECT/CT into the diagnostic imaging algorithm of chronic wrist pain.  相似文献   

13.
Short-range stiffness (SRS) is a mechanical property of muscles that is characterized by a disproportionally high stiffness within a short length range during both lengthening and shortening movements. SRS is attributed to the cross-bridges and is beneficial for stabilizing a joint during, e.g., postural conditions. Thus far, SRS has been estimated mainly on isolated mammalian muscles. In this study we presented a method to estimate SRS in vivo in the human wrist joint.SRS was estimated at joint level in the angular domain (N m/rad) for both flexion and extension rotations of the human wrist in nine healthy subjects. Wrist rotations of 0.15 rad at 3 rad/s were imposed at eight levels of voluntary contraction ranging from 0 to 2.1 N m by means of a single axis manipulator.Flexion and extension SRS of the wrist joint was estimated consistently and accurately using a dynamic nonlinear model that was fitted onto the recorded wrist torque. SRS increased monotonically with torque in a way consistent with previous studies on isolated muscles.It is concluded that in vivo measurement of joint SRS represents the population of coupled cross-bridges in wrist flexor and extensor muscles. In its current form, the presented technique can be used for clinical applications in many neurological and muscular diseases where altered joint torque and (dissociated) joint stiffness are important clinical parameters.  相似文献   

14.
15.

Objective

To investigate changes of muscle recruitment and coordination following constraint-induced movement therapy, constraint-induced movement therapy plus electrical stimulation, and traditional occupational therapy in treating hand dysfunction.

Methods

In a randomized, single-blind, controlled trial, children with hemiplegic cerebral palsy were randomly assigned to receive constraint-induced movement therapy (n = 22), constraint-induced movement therapy plus electrical stimulation (n = 23), or traditional occupational therapy (n = 23). Three groups received a 2-week hospital-based intervention and a 6-month home-based exercise program following hospital-based intervention. Constraint-induced movement therapy involved intensive functional training of the involved hand during which the uninvolved hand was constrained. Electrical stimulation was applied on wrist extensors of the involved hand. Traditional occupational therapy involved functional unimanual and bimanual training. All children underwent clinical assessments and surface electromyography (EMG) at baseline, 2 weeks, 3 and 6 months after treatment. Surface myoelectric signals were integrated EMG, root mean square and cocontraction ratio. Clinical measures were grip strength and upper extremity functional test.

Results

Constraint-induced movement therapy plus electrical stimulation group showed both a greater rate of improvement in integrated EMG of the involved wrist extensors and cocontraction ratio compared to the other two groups at 3 and 6 months, as well as improving in root mean square of the involved wrist extensors than traditional occupational therapy group (p<0.05). Positive correlations were found between both upper extremity functional test scores and integrated EMG of the involved wrist as well as grip strength and integrated EMG of the involved wrist extensors (p<0.05).

Conclusions

Constraint-induced movement therapy plus electrical stimulation is likely to produce the best outcome in improving muscle recruitment and coordination in children with hemiplegic cerebral palsy compared to constraint-induced movement therapy alone or traditional occupational therapy.

Trial registration

chictr.org ChiCTR-TRC-13004041  相似文献   

16.

Background

Studies on the relationship between occlusal problems and the spine are of increasing interest. In this study, we monitored the sEMG activity of masticatory, neck, and trunk muscles during the treatment of scoliosis in young patients, and compared the data with a control of untreated group.

Subjects and methods

Twelve white Caucasian patients (nine males and three females; mean age of 8.0 ± 1.5 years) with scoliosis and Class I occlusion (without crowding) were included in this study (study group). Fifteen healthy subjects (nine males and six females; mean age of 9.5 ± 0.8 years) were recruited as control group. The subjects were visited before they underwent the treatment of scoliosis, as well as after 3 (T1) and 6 months (T2) of their treatment for scoliosis. The patients were instructed to wear the device during sleep and during the day, according to the protocol given by their orthopedic.

Results

The treated group showed statistically significant changes in the sEMG activity of masticatory, neck, and trunk muscles, both at rest and during MVC of the mandible with respect to T0. The masseter and the anterior temporalis showed a significant improvement in the asymmetry index from T0 to T2. On the other hand, subjects in the control group did not register much change.

Conclusion

Our findings suggest that the use of a functional device for the treatment of scoliosis induces a significant reduction in the asymmetry index of the trunk muscles, as well as a significant increase in the contractility of masticatory muscles.  相似文献   

17.
Lumbar spine accessory movements, used by therapists in the treatment of patients with low back pain, is thought to decrease paravertebral muscular activity; however there is little research to support this suggestion. This study investigated the effects of lumbar spine accessory movements on surface electromyography (sEMG) activity of erector spinae.A condition randomised, placebo controlled, repeated measures design was used. sEMG measurements were recorded from 36 asymptomatic subjects following a control, placebo and central posteroanterior (PA) mobilisation to L3 each for 2 min. The therapist stood on a force platform while applying the PA mobilisation to quantify the force used. The PA mobilisation applied to each subject had a mean maximum force of 103.3 N, mean amplitude of force oscillation of 41.1 N, and a frequency of 1.2 Hz. Surface electromyographic data were recorded from the musculature adjacent to L3, L5 and T10.There were statistically significant reductions of 15.5% (95% CI: 8.0–22.5%) and 17.8% (95% CI: 12.9–22.4%) in mean sEMG values following mobilisation compared with the control and placebo, respectively.This study demonstrates that a central PA mobilisation to L3 results in a statistically significant decrease in the sEMG activity of erector spinae of an asymptomatic population.  相似文献   

18.

Background

There is a high prevalence of musculoskeletal disorders among healthcare professional students. Although recent studies show musculoskeletal disorders are a common problem among X-ray technologists, there are no data on these disorders among students of this healthcare profession. We have therefore estimated the prevalence of musculoskeletal complaints among a group of X-ray technology students.

Methods

The students (n = 109) currently attending the 3-year X-ray technologist school at a large University in the Apulia region of Southern Italy were recruited for the study, with a 100% participation rate. A questionnaire collected data concerning personal characteristics, physical exposure during training activities, and the presence of musculoskeletal symptoms in the neck, shoulders, low back, hand/wrist and legs.

Results

The prevalence of complaints in any body site over the previous 12 months was 37%. Low back pain was the most frequently reported symptom (27%), followed by neck (16%), shoulder (11%), leg (8%) and hand/wrist (5%) pain. Poor physical activity was associated with the complaints.

Conclusions

Our study showed prevalence rates of musculoskeletal complaints among X-ray technology students to be somewhat high, representing about half of those found in Italian technologists. The most common musculoskeletal problem was low back pain, which had also been found in research conducted among nursing students. Our research also showed a significant association between poor physical activity and the presence of musculoskeletal disorders in young university students.
  相似文献   

19.

Objective

To test whether the phantom limb awareness could be altered by observing mirror reflection-induced visual feedback (MVF) in unilateral forearm amputees.

Methods

Ten unilateral forearm amputees were asked to perform bilateral (intact and phantom) synchronous wrist motions with and without MVF. During wrist motion, electromyographic activities in the extensor digitorum longus (EDL) and flexor carpi radialis muscles (FCR) were recorded with bipolar electrodes. Degree of wrist range of motion (ROM) was also recorded by electrogoniometry attached to the wrist joint of intact side. Subjects were asked to answer the degree of attainment of phantom limb motion using a visual analog scale (VAS: ranging from 0 (hard) to 10 (easy)).

Results

VAS and ROM were significantly increased by utilizing MVF, and the extent of an enhancement of the VAS and wrist ROM was positively correlated (r = 0.72, p<0.05). Although FCR EMG activity also showed significant enhancement by MVF, this was not correlated with the changes of VAS and ROM. Interestingly, while we found negative correlation between EDL EMG activity and wrist ROM, MVF generally affected to be increasing both EDL EMG and ROM.

Conclusions

Although there was larger extent of variability in the effect of MVF on phantom limb awareness, MVF has a potential to enhance phantom limb awareness, in case those who has a difficulty for the phantom limb motion. The present result suggests that the motor command to the missing limb can be re-activated by an appropriate therapeutic strategy such as mirror therapy.  相似文献   

20.

Background

Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement).

Methods

A total of 125 children ages 7–13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen''s Kappa (κ) and new cut-points were identified from Receiver Operating Characteristic (ROC).

Results

Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of κ from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement.

Conclusions

The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号