首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC‐ESI‐MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion‐based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI‐TOF MS revealed that purified mAb contained predominantly complex‐type plant N‐glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)‐derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low‐cost production platform for monoclonal antibodies.  相似文献   

2.
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α‐Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose‐dependent. Activity‐based protein profiling (ABPP) revealed that the activities of papain‐like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.  相似文献   

3.
Co‐expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity‐based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain‐like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar‐processing enzyme and serine hydrolase activity. A robust concentration‐dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin–PLCP interactions. Activity‐based proteomics revealed that nine different Cathepsin‐L/‐F‐like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin‐B/‐H‐like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin‐containing proteases from the Resistant‐to‐Desiccation‐21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.  相似文献   

4.
Quercus species have a plethora of applications, either in wine and wood industries, in human and animal nutrition or in human health. In order to improve the knowledge on this genus, the aim of the present study was to correlate, for the first time, the phenolic composition of different Quercus ilex L. plant tissues (leaves in two maturation stages, acorns, teguments and cotyledons) and different extraction procedures with scavenging and anticholinesterase activities. The hydromethanolic and aqueous extracts obtained showed strong radical scavenging activity against DPPH, superoxide anion radical and nitric oxide radical, leaves exhibiting higher total phenolic content and revealing the best antioxidant properties, followed by tegument and acorns. Concerning the phenolic profile, fifteen compounds were identified and quantified by HPLC‐DAD, ranging from 1568.43 to 45,803.16 mg/kg dried extract. The results indicate that Qilex can be a source of strong antioxidant phenolic compounds with possible interest for food and pharmaceutical industries.  相似文献   

5.
Anti‐CD20 murine or chimeric antibodies (Abs) have been used to treat non‐Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti‐CD20 Abs demonstrated to be effective in inducing regression of B‐cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti‐CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL‐2‐based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti‐CD20‐human interleukin‐2 (hIL‐2) immunocytokine (2B8‐Fc‐hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv‐Fc‐engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS‐PAGE and gel filtration. Purification yields using protein‐A affinity chromatography were in the range of 15–20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant‐type glycosylation. 2B8‐Fc‐hIL2 and the cognate 2B8‐Fc antibody, devoid of hIL‐2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody‐dependent cell‐mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8‐Fc‐hIL2, IL‐2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.  相似文献   

6.
This work aims to determine the phytochemical characterization of the pericarp of Chamaedorea radicalis Mart. fruit as a non-timber product with potential to obtain phytochemicals with potential applications in the industry. Fruit from C. radicalis were grouped in four ripening stages named as S1, S2, S3 and S4, according to maturity; S1 the most unripe stage and S4 the completely ripe stage. Determinations of total phenolic compounds, free radical scavenging activities and total flavonoid contents using spectrophotometric methods were done. Also, the tentative identification of phytochemicals during fruit ripening was done using UPLC-MS-MS. Total phenolic compound (TPC) content ranged from 7.24 to 12.53 mg gallic acid equivalents per gram of fresh weight (mg GAE/ g FW). Total flavonoids (TF) contents ranged from 0.163 to 0.23 mg of quercetin equivalents per g FW (mg QE/g FW). Free radical scavenging activity against DPPH and ABTS radicals varied from 40.80 to 53.68 and from 22.29 to 37.76 mmol Trolox equivalents g FW (mmol TE/g FW), respectively. Antioxidant assay in vitro by FRAP (ferric reducing antioxidant power) method showed that S3 was the highest level with antioxidant power while S4 was the lowest with Red ripeness stage showed the lowest contents for all determinations. Mass spectrometry allowed detection of 26 compounds, including phenolics, alkaloids and saponins. Afzelin, Kaempferol 3-neohesperidoside and the four saponins identified were present in all ripeness stages. Preliminary phytochemical identi- fication and the spectrophotometric determinations showed that the pericarp of C. radicalis presented antioxidants and compounds related to alkaloids, phenolics and saponins. The presence and abundance of each phytochemical regarding each ripeness stage should be considered.  相似文献   

7.
Tomato apex necrosis virus (ToANV, species Tomato marchitez virus, genus Torradovirus, family Secoviridae) causes a severe tomato disease in Mexico. One distinctive feature of torradoviruses compared with other members of the family Secoviridae is the presence of an additional open reading frame (ORF) in genomic RNA2 (denominated RNA2‐ORF1), located upstream of ORF2. RNA2‐ORF2 encodes a polyprotein that is processed into a putative movement protein and three capsid proteins (CPs). The RNA2‐ORF1 protein has homologues only amongst other torradoviruses and, so far, no function has been associated with it. We used recombinant and mutant ToANV clones to investigate the role of the RNA2‐ORF1 protein in various aspects of the virus infection cycle. The lack of a functional RNA2‐ORF1 resulted in an inability to systemically infect Nicotiana benthamiana and tomato plants, but both positive‐ and negative‐strand RNA1 and RNA2 accumulated locally in agroinfiltrated areas in N. benthamiana plants, indicating that the RNA2‐ORF1 mutants were replication competent. Furthermore, a mutant with a deletion in RNA2‐ORF1 was competent for virion formation and cell‐to‐cell movement in the cells immediately surrounding the initial infection site. However, immunological detection of the ToANV CPs in the agroinfiltrated areas showed that this mutant was not detected in the sieve elements even if the surrounding parenchymatic cells were ToANV positive, suggesting a role for the RNA2‐ORF1 protein in processes occurring prior to phloem uploading, including efficient spread in inoculated leaves.  相似文献   

8.
9.
10.
11.
To study how the P19 suppressor of gene‐silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co‐expressed with P19 in an RNAi‐based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102–106) containing different 5′ and 3′ UTRs, designated as vector sets 102–106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5′UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15‐fold (to about 2.3% of TSP) when co‐expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co‐expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I‐64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19‐induced responses.  相似文献   

12.
Two distinct transient expression approaches were compared with assess the impact of the viral suppressor p19 on a recombinant protein production performed in Nicotiana benthamiana suspension culture. A parental N. benthamiana cell line was transiently transformed with either an Agrobacterium containing a gene construct for a murine IgG1 (R514) or concurrently with two Agrobacteria containing R514 or p19. In addition, a stably transformed N. benthamiana cell line that constitutively expresses p19 was transformed with R514‐containing Agrobacterium. The parental N. benthamiana cell line that had been co‐cultivated with both p19 and R514 achieved the highest yield of IgG1 (1.06 mg IgG1/kg FW; 0.024% TSP) compared with that obtained without p19 (0.61 mg IgG1/kg FW; 0.014% TSP). The N. benthamiana cell line that had been stably transformed with p19 only reached 0.25 mg IgG1/kg FW (0.009% TSP) when co‐cultured with R514‐containing Agrobacterium. Dual agroinfiltration of N. benthamiana leaves with p19 and R514 was also performed to assess for Agrobacteria efficiencies and 147.7 mg IgG1/kg FW were obtained. Therefore, our results demonstrate that transient co‐transformation of plant cell suspension culture with two transformation vectors is feasible and that the use of the viral suppressor of silencing p19 significantly raises the production of the protein of interest. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
The numerous studies indicate leaves of plants are a rich source of bioactive compounds that can be a valuable source of compounds used in the pharmaceutical and cosmetic industries. Aim of this study was to investigate the chemical composition and the antioxidant property of Crocus speciosus leaves. Primary phytochemical screening of C. speciosus leaves revealed the presence of some following compound categories such as phenolic compounds, aminoacids, saponins, proteins, tannins, triterpenoids, glycosides, polysaccharides. The total flavonoids and phenolic compounds content were determined spectrophotometrically and by HPLC-DAD and HPLC-MS. Antiradical activity was determined by ABTS radical-cation scavenging method, spectrophotometrically. The total amount of flavonoids in C. speciosus leaves was 1.07 ± 0.02 mg RE/g (p < 0.05), the total amount of phenolic compounds was 0.41 ± 0.01 mg GAE/g (p < 0.05). By HPLC-DAD-MS analysis the presence of the mangiferin, chlorogenic acid, isoorientin, kaempferol, hyperoside, and isoquercitin was established for the first time in Crocus leaves. The antiradical activity of C. speciosus leaves extracts was 150.08 ± 4.5 μmol/g (p < 0.05) and its was mainly attributed to phenolic compounds content. The high amounts of flavonoids and antiradical activity in C. speciosus leaves suggests promising phytochemical and pharmacological study of this Crocus species.  相似文献   

14.
The brown alga Saccharina japonica is abundant on rocky coasts of Far East Asia, including Korea, Japan, and China. S. japonica produces high levels of compounds used in the food, cosmetic, and pharmaceutical industries. Thus, many studies have focused on the biosynthesis, extraction, purification, and application of carbohydrates, as well as biochemical features that yield cellular proteins. However, total protein isolation has proved difficult, due to viscous polysaccharides on the surface of S. japonica. To extract total proteins cleanly from S. japonica, we examined various lysis buffers and detergents for effective cell lysis and removal of polysaccharide. Lysis solution D (7 M urea, 4% [3-(3-cholami-dopropyl dimethylammonio) propanesulfonate], 2 M thio-urea, 100 mM dithiothreitol, 4% pharmalyte, 4% polyvinylpyrrolidone) achieved a comparatively high yield of protein extraction, with 12 mg of proteins purified per 1 g of dry weight of S. japonica. Proteins isolated using lysis solution D and subjected to two-dimension polyacrylamide gel electrophoresis generated more than 200 protein spots. Of these, 60 spots were analyzed by matrix-assisted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) and MALDI-TOF/MS/MS. A database search revealed that these proteins include glyceraldehyde-3-phosphate dehydrogenase, tryptophan synthase α chain, 6-phosphogluconate dehydrogenase (6PGD), actin, phosphoglycerate kinase, elongation factor Tu, kinesin, fucoxanthin-chlorophyll a–c binding protein F precursor and ATP synthase subunit β. Many protein spots were unidentified. When S. japonica was incubated at different pH, tryptophan synthase α chain and variant surface glycoprotein 7 precursor were highly expressed at pH 7.5 and 9.5, respectively, whereas 6PGD and kinesin showed low expression at pH 9.5.  相似文献   

15.
The use of recombinant proteins has increased greatly in recent years, as also have increased the number of techniques and materials used for their production and purification. Among the different types of bioreactors being studied, there is a general consensus among scientists that production in green plant tissues such as leaves is more feasible. However, the presence of chlorophyll and phenolic compounds in plant extracts, which can precipitate and denature the proteins besides damaging separation membranes and gels, makes this technology impracticable on a commercial scale. In the present work, the adsorption to electrochemically produced aluminum hydroxide gel was applied as a prepurification step for recombinant synthetic green fluorescent protein (sGFP), also referred to as enhanced green fluorescent protein, produced in Nicotiana benthamiana leaves. Removal efficiencies of 99.7% of chlorophyll, 88.5% of phenolic compounds, and 38.5% of native proteins from the N. benthamiana extracts were achieved without removing sGFP from the extracts. As electrochemical preparation of aluminum hydroxide gel is a cost‐effective technique, its use can substantially contribute to the development of future production platforms for recombinant proteins produced in green plant tissues of pharmaceutical and industrial interest. © 2011 American Institute of Chemical Engineers Biotechnol. Prog.,, 2011  相似文献   

16.
Agrobacterium genetically transforms plants by transferring and integrating T‐(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus‐tagged VirE2 or Venus‐tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1–Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY‐2 protoplasts, regardless of whether VirE2 was co‐expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium‐mediated transformation or VirE2 subcellular localization.  相似文献   

17.
A strain‐specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant‐based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high‐molecular‐weight structures. H5‐containing structures were purified and examination by transmission electron microscopy confirmed virus‐like particle (VLP) assembly. High‐performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP‐producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 µg of purified influenza H5‐VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 µg of H5‐VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.  相似文献   

18.
植物生物反应器是一种新兴的重组蛋白表达系统,是分子农业的核心内容之一。本研究在本氏烟草(Nicotiana benthamiana)中表达了抗八肽(DYKDDDDK, FLAG)标签抗体,并对其进行纯化与鉴定。通过多次免疫小鼠获得高效价抗FLAG抗体并测出其编码序列,然后亚克隆至植物DNA病毒表达载体,最后通过农杆菌介导转染烟草叶片。经Western blotting检测了转染后2−9 d抗体的表达情况:3 d后FLAG抗体开始在烟草叶片中表达,5 d后表达量达到峰值,每千克鲜叶估计可表达66 mg FLAG抗体。抗体经过分离纯化后浓缩为1 mg/mL,按1:10 000稀释仍可识别1 ng/mL的抗原,表明植物生产的FLAG抗体具有高亲和力。植物生物反应器可用于生产高亲和力抗体,并具有简易、成本低和生产周期短等特点,具有很高的应用价值。  相似文献   

19.
Increased consumption of vegetables or plant food has been associated with decreased risk of developing major chronic diseases, such as cancers, diabetes, cardiovascular diseases, and age-related functional decline. Ramie leaves are rich in phenolics and flavonoids, which have been suggested for human health benefits. Phenolic contents, flavonoid contents, phenolic compounds, and anti-cancer properties in six species of ramie leaves were analyzed by Folin-reagent method, sodium borohydride/chloranil-based assay (SBC), HPLC method and antiproliferation, cytoxicity, respectively. Antioxidant activities were measured through peroxyl radical scavenging capacity (PSC) method, oxygen radical absorbance capacity (ORAC) method, and cellular antioxidant activity (CAA). Research indicated that Boehmeria penduliflora contained the highest total phenolic content (2313.7±27.28 mg GAE/100 g FW), and flavonoid content (1682.4±27.70 mg CAE/100 g FW). Boehmeria tricuspis showed the highest PSC value (9574.8±117.63 µM vit. C equiv./100 g FW), while Boehmeria penduliflora indicated the highest ORAC value (330.44±16.88 µmol Trolox equiv./g FW). The antioxidant activities were correlated with phenolic contents and flavonoid contents. Boehmeria tricuspis had the highest antiproliferative capacity with the lowest EC50 (4.11±0.19 mg/mL). The results for the analyzed ramie for CAA were significantly different from each other (p<0.05), Boehmeria tricuspis had the highest CAA value (133.63±7.10 µmol QE/100 g). Benzoic acid, 4-coumaric acid, caffeic acid, and ferulic acid were the dominant phenolic ingredients in the ramie leaves according to HPLC analysis. Our research is the first report to study the phytochemical profiles and antioxidant activities in different species of ramie leaves for their health benefit.  相似文献   

20.
Polyphenols are the predominant ingredients in apple seeds. However, few data are available on the phenolic profile or antioxidant activity in apple seeds in previous researches. In this study, low-molecular-weight phenolic compounds and antioxidant activity in seeds, peels, and flesh of seven apple cultivars grown in northwest China were measured and analyzed using HPLC and FRAP, DPPH, ABTS assays, respectively. HPLC analysis revealed phloridzin as the dominant phenolic compound in the seeds with its contents being 240.45–864.42 mg/100 gDW. Total phenolic content (TPC) measured by the Folin–Ciocalteu assay in apple seed extracts of seven cultivars ranged from 5.74 (Golden Delicious) to 17.44 (Honeycrisp) mgGAE/gDW. Apple seeds showed higher antioxidant activity than peels or flesh; antioxidant activity in seeds varied from 57.59 to 397.70 μM Trolox equivalents (TE)/g FW for FRAP, from 37.56 to 64.31 μM TE/g FW for DPPH, and from 220.52 to 708.02 μM TE/g FW for ABTS. TPC in apple seeds was significantly correlated with all three assays. Principal component analysis (PCA) indicated that Honeycrisp was characterized with high contents of total polyphenols and phloridzin. Our findings suggest that phenolic extracts from apple seeds have good commercial potential as a promising antioxidant for use in food or cosmetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号