首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
武绍龙  唐明  张习敏  唐婧 《广西植物》2022,42(7):1170-1180
为分析马缨杜鹃(Rhododendron delavayi)花开花至凋谢过程中的代谢产物差异及其通路,该文采用LC-MS/MS技术对其花苞期、开裂期、传粉期、盛开期、衰老期和凋谢期的化学成分进行非靶向代谢组学分析。结果表明:(1)共鉴定到973种代谢物,主要包含黄酮类、有机酸、酚酸类、氨基酸及其衍生物、脂类、生物碱等。(2)主成分分析(PCA)表明样本间代谢物存在差异,结合正交偏最小二乘判别分析(OPLS-DA)、t检验的P值和单变量分析的差异倍数(fold-change)筛选差异代谢物(VIP>1,P<0.05,Fc>2或Fc<0.5),涉及591种,在马缨杜鹃花期进入衰老期和凋谢期后差异代谢物数量和表达量显著上升,其中花苞期至开裂期差异代谢物的表达主要呈现下调,而进入衰老期和凋谢期后差异代谢物的表达主要呈现上调。(3)KEGG注释到68条代谢通路,其中差异代谢物极显著富集(P < 0.01)通路3条,包括苯丙素类生物合成、植物激素的生物合成和类黄酮生物合成。(4)结合苯丙素类、黄酮类等有效成分生物合成通路共筛选到10种代谢物包括苯丙氨酸(L-phenylalanine)、反式肉桂酸(trans-cinnamic acid)、查耳酮(chalcone)、柚皮素(naringenin)、对香豆酰基莽草酸(p-coumaroyl shikimic acid)、阿魏酸(ferulic acid)、松柏醇(coniferyl alcohol)、芥子酸(sinapic acid)、紫丁香苷(syringin)、槲皮素(quercetin)。此外,有效成分的差异代谢物表明苯丙素类生物合成代谢活动随马缨杜鹃花的发育逐渐增强,而黄酮类化合物生物合成逐渐减弱,这些关键差异代谢物可能对马缨杜鹃花的发育有重要的调控作用。该研究为马缨杜鹃花开花至凋谢进程中的有效成分代谢途径活性物质的研究提供了代谢组学基础,为进一步研究马缨杜鹃花花期调控的分子机理提供参考。  相似文献   

2.
Parametric analysis was applied for a metabolic flux model for the fed-batch culture of Bacillus subtilis producing recombinant α-amylase and protease. The metabolic flux model was formulated as a linear programming problem consisting of 49 reactions (decision variables) and 50 metabolites (equality constraints). This study was aimed to determine the response of the metabolic fluxes and objective function value of minimizing the difference between ATP consumption and ATP production (ATP balance). With regard to intracellular metabolite accumulation, the objective function value was least sensitive to variation in succinate and most sensitive to variation in malate. Amongst the variations in the accumulation rates of extracellular metabolites, the objective function value was least sensitive to variation in glutamate and most sensitive to variation in starch hydrolysis and triglyceride synthesis. A 10% variation in metabolite accumulation rates caused a maximum of 13.8% variation (standard error = 3.8%) in the objective function value.  相似文献   

3.
Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were recorded by both 1H NMR and accurate mass LC-quadrupole time-of-flight (QTOF) MS. Different analytical selectivities were found for these both profiling techniques. In fact, NMR and LCMS provided complementary data, as the metabolites detected belong to essentially different metabolic pathways. Yet, upon unsupervised multivariate analysis, both NMR and LCMS datasets revealed a clear segregation of, on the one hand, the cherry tomatoes and, on the other hand, the beef and round tomatoes. Intra-method (NMR–NMR, LCMS–LCMS) and inter-method (NMR–LCMS) correlation analyses were performed enabling the annotation of metabolites from highly correlating metabolite signals. Signals belonging to the same metabolite or to chemically related metabolites are among the highest correlations found. Inter-method correlation analysis produced highly informative and complementary information for the identification of metabolites, even in de case of low abundant NMR signals. The applied approach appears to be a promising strategy in extending the analytical capacities of these metabolomics techniques with regard to the discovery and identification of biomarkers and yet unknown metabolites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Metabolomic analysis of the urinary organic acids from 39 selected children with defined respiratory chain deficiencies (RCDs) was performed using untargeted gas chromatography–mass spectrometry, revealing the presence of 255 endogenous and 46 exogenous substances. Variable reduction identified 92 variables from the endogenous substances, which could be analysed by univariate and multivariate statistical methods. Using these methods, no characteristic organic acid biomarker profile could be defined of practical value for diagnostic purposes for complex I (CI), complex III (CIII) and multiple complex (CM) deficiencies. The statistical procedures used did, however, disclose 24 metabolites that were practical highly (d > 0.75) and statistically (P < 0.05) significant for the combined and clinically closely related group of RCDs. Several of these metabolites occur in single enzyme inherited metabolic diseases, but most were not previously reported to be linked to the metabolic perturbations that are due to RCDs. Ultimately, we constructed a global metabolic profile of carbohydrate, amino acid and fatty acid catabolism, illuminating the diverse and complex biochemical consequences of these disorders. This metabolomics investigation disclosed a metabolite profile that has the potential to define an extended and characteristic biosignature for RCDs and the development of a non-invasive screening procedure for these disorders.  相似文献   

5.
Prognosis is usually expressed in terms of the probability that a patient will or will not have experienced an event of interest t years after diagnosis of a disease. This quantity, however, is of little informative value for a patient who is still event-free after a number of years. Such a patient would be much more interested in the conditional probability of being event-free in the upcoming t years, given that he/she did not experience the event in the s years after diagnosis, called “conditional survival.” It is the simplest form of a dynamic prediction and can be dealt with using straightforward extensions of standard time-to-event analyses in clinical cohort studies. For a healthy individual, a related problem with further complications is the so-called “age-conditional probability of developing cancer” in the next t years. Here, the competing risk of dying from other diseases has to be taken into account. For both situations, the hazard function provides the central dynamic concept, which can be further extended in a natural way to build dynamic prediction models that incorporate both baseline and time-dependent characteristics. Such models are able to exploit the most current information accumulating over time in order to accurately predict the further course or development of a disease. In this article, the biostatistical challenges as well as the relevance and importance of dynamic prediction are illustrated using studies of multiple myeloma, a hematologic malignancy with a formerly rather poor prognosis which has improved over the last few years.  相似文献   

6.
为了解不同生长时期灰树花(Grifola frondosa)菌丝体的代谢产物差异及其通路,该研究采用HPLC-MS/MS分析方法对培养10、20、30 d的灰树花菌丝体进行分析。结果表明:(1)共42类584种代谢物被鉴定出,其中159种、47种和165种代谢物在对照组(10 d vs 20 d、20 d vs 30 d、10 d vs 30 d)中表现出不同的积累模式,不同培养时间的代谢物成分差异显著。(2)培养10 d产生较多与促进菌丝体生长和氧化供能有关的物质,培养20 d产生或积累了多种对人体有益的次生代谢物,如橄榄苦甙、甘胆酸、N-甲基酪胺、Alprazolam,培养30 d菌丝体中含有多种与产生香气有关的物质。(3)KEGG代谢通路富集分析,10 d vs 20 d比较组、20 d vs 30 d比较组和10 d vs 30 d比较组分别富集到163条、81条、137条代谢通路,氨基酸代谢在菌丝体不同培养时间中的影响最大。该研究初步探索了灰树花菌丝体的差异代谢物及代谢通路,并发现不同培养时间灰树花菌丝体代谢产物具有明显的差异,以及菌丝体中部分成分含量与培养时间有关,对灰树花菌丝体的质量控制和机理研究具有一定的参考价值。  相似文献   

7.
Isovaleric acidemia (IVA, MIM 248600) can be a severe and potentially life-threatening disease in affected neonates, but with a positive prognosis on treatment for some phenotypes. This study presents the first application of metabolomics to evaluate the metabolite profiles derived from urine samples of untreated and treated IVA patients as well as of obligate heterozygotes. All IVA patients carried the same homozygous c.367 G > A nucleotide change in exon 4 of the IVD gene but manifested phenotypic diversity. Concurrent class analysis (CONCA) was used to compare all the metabolites from the original complete data set obtained from the three case and two control groups used in this investigation. This application of CONCA has not been reported previously, and is used here to compare four different modes of scaling of all metabolites. The variables important in discrimination from the CONCA thus enabled the recognition of different metabolic patterns encapsulated within the data sets that would not have been revealed by using only one mode of scaling. Application of multivariate and univariate analyses disclosed 11 important metabolites that distinguished untreated IVA from controls. These included well-established diagnostic biomarkers of IVA, endogenous detoxification markers, and 3-hydroxycaproic acid, an indicator of ketosis, but not reported previously for this disease. Nine metabolites were identified that reflected the effect of treatment of IVA. They included detoxification products and indicators related to the high carbohydrate and low protein diet which formed the hallmark of the treatment. This investigation also provides the first comparative metabolite profile for heterozygotes of this inherited metabolic disorder. The detection of informative metabolites in even very low concentrations in all three experimental groups highlights the potential advantage of the holistic mode of analysis of inherited metabolic diseases in a metabolomics investigation.  相似文献   

8.
王正  王石垒  吴群  徐岩 《微生物学通报》2021,48(11):4167-4177
[背景] 在白酒发酵过程中,原料中的谷物蛋白可为微生物的生长提供氮源等营养物质,进而形成多种代谢产物。谷物蛋白可分为清蛋白、球蛋白、醇溶蛋白和谷蛋白。然而,谷物蛋白对微生物多样性及其代谢产物多样性的调控尚不明确。[目的] 揭示白酒发酵过程中与微生物多样性及其代谢产物多样性显著相关的关键谷物蛋白种类及其调控作用。[方法] 通过Osborne法测定不同品种高粱中谷物蛋白的组成;采用多组学联用技术解析4种高粱在发酵过程中的微生物菌群多样性及代谢产物多样性;通过模拟发酵揭示原料中影响微生物群落及其代谢多样性的关键蛋白。[结果] 4种高粱中的谷物蛋白组成存在显著差异(ANOSIM:R=0.85,P=0.001);4种高粱在发酵第5天时,S4高粱的细菌多样性显著(P<0.05)高于其他3种高粱,S3高粱中微生物的代谢产物多样性显著(P<0.05)高于其他3种高粱;清蛋白和球蛋白含量与发酵第5天的优势细菌多样性(R2=0.34,P<0.05;R2=0.58,P<0.05)和代谢产物多样性呈显著正相关(R2=0.58,P<0.05;R2=0.36,P<0.05),被定义为关键蛋白;模拟发酵实验验证了优势细菌多样性和代谢产物多样性可随着2种关键蛋白即清蛋白和球蛋白含量的升高而升高。当清蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.72和0.65;当球蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.66和0.81。[结论] 研究揭示了酿造原料中的清蛋白和球蛋白对发酵过程中细菌多样性及代谢产物多样性的调控作用,为提高白酒发酵的可控性及质量提供了依据。  相似文献   

9.
胡悦  任保青  陈陆琴  曹建庭  刘兵兵 《广西植物》2023,43(12):2245-2255
丽豆(Calophaca sinica)是我国华北地区特有的一种珍稀野生植物。为探明丽豆的营养价值,该文以大豆(Glycine max)为参照组,利用液相色谱-质谱联用(LC-MS)技术对其种子进行了比较代谢组学研究。结果表明:(1)丽豆和大豆中共检测到1 857种代谢产物,二者成分相同且含量相似的代谢物有1 698种(>90%),差异代谢物有159种(<10%)。(2)在差异代谢物中,成分差异的有9种,其中有5种为丽豆特有,剩余150种均为含量差异,其中48种(约30%)在丽豆中的含量高于大豆。(3) KEGG注释到8条差异代谢物显著富集(P<0.1)的通路,主要包括初生代谢物的各类氨基酸生物合成途径和次生代谢物的罗汉松脂素、花生四烯酸以及二萜类等生物合成途径。(4)丽豆比大豆含量低的化学组分主要是初生代谢产物,比大豆含量高的化学组分主要是次生代谢物,而这些次生代谢物在调节血糖、骨坏损修复、增强免疫以及消炎抗癌等生理过程中有着积极的作用。综上所述,该研究认为丽豆与大豆具有相近的营养价值,并且对改善人类亚健康状况有积极的影响;此外,该文使我们对丽豆的营养价值和代谢组成...  相似文献   

10.
11.
12.
A comprehensive and large‐scale metabolome quantitative trait loci (mQTL) analysis was performed to investigate the genetic backgrounds associated with metabolic phenotypes in rice grains. The metabolome dataset consisted of 759 metabolite signals obtained from the grains of 85 lines of rice (Oryza sativa, Sasanishiki × Habataki back‐crossed inbred lines). Metabolome analysis was performed using four mass spectrometry pipelines to enhance detection of different classes of metabolites. This mQTL analysis of a wide range of metabolites highlighted an uneven distribution of 802 mQTLs on the rice genome, as well as different modes of metabolic trait (m‐trait) control among various types of metabolites. The levels of most metabolites within rice grains were highly sensitive to environmental factors, but only weakly associated with mQTLs. Coordinated control was observed for several groups of metabolites, such as amino acids linked to the mQTL hotspot on chromosome 3. For flavonoids, m‐trait variation among the experimental lines was tightly governed by genetic factors that alter the glycosylation of flavones. Many loci affecting levels of metabolites were detected by QTL analysis, and plausible gene candidates were evaluated by in silico analysis. Several mQTLs profoundly influenced metabolite levels, providing insight into the control of rice metabolism. The genomic region and genes potentially responsible for the biosynthesis of apigenin‐6,8‐di‐C‐α‐l‐ arabinoside are presented as an example of a critical mQTL identified by the analysis.  相似文献   

13.
Du H  Wang Z  Yu W  Liu Y  Huang B 《Physiologia plantarum》2011,141(3):251-264
Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool‐season (C3) and warm‐season (C4) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C4 bermudagrass and C3 Kentucky bluegrass by performing metabolite profile analysis using gas chromatography‐mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis‘Midnight’) and hybrid bermudagrass (Cynodon transvaalensis×Cynodon dactylon‘Tifdwarf’) were grown under optimum temperature conditions (20/15°C for Kentucky bluegrass and 30/25°C for bermudagrass) or heat stress (35/30°C for Kentucky bluegrass and 45/40°C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat‐responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long‐term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ‐Aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C3 Kentucky bluegrass and C4 bermudagrass.  相似文献   

14.
Erythrocyte membranes are altered as a consequence of oxidative stress following the incubation of intact erythrocytes with one of the major metabolites of the antioxidant butylated hydroxyanisole (BHA), tert-butylhydroquinone(tBHQ). A ratherpersistentsemiquinone radical was observed by electron spin resonance (ESR) spectroscopy when tBHQ was incubated with either homogeneous oxyhemoglobin solutions or suspensions of intact erythrocytes. Erythrocyte ghosts prepared from fresh control erythrocytes and ghosts from erythrocytes preincubated with BHA and its metabolite, tBHQ, were subjected to polyacrylamide gel electrophoresis (SDS-PAGE). Only minor changes of the electrophoresis pattern relative to the control was observed in the BHA incubations whereas tBHQ significantly increased the amount of high molecular weight degradation products of erythrocyte membrane constituents. These changes were only observed when incubations were performed in the presence of oxygen. In control experiments where heme oxygen was replaced by carbon monoxide, no membrane degradation products appeared. These observations can be interpreted in terms of metabolic activation of the antioxidant BHA via tBHQ to the tert-butylsemiquinone free radical and finally to the corresponding quinone, thereby leading to harmful effects on erythrocyte membrane structures. Moreover, deleterious effects on other biological membranes are also likely to occur.  相似文献   

15.
A comparative metabolite profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the impact of genetic background, growing location and season on the chemical composition of maize grain. The metabolite profiling protocol involved sub-fractionation of the metabolites and allowed the assessment of about 300 distinct analytes from different chemical classes (polar to lipophilic), of which 167 could be identified. A comparison, over three consecutive growing seasons, of the metabolite profiles of four maize cultivars which differed in their maturity classification, was carried out using principal component analysis (PCA). This revealed a strong separation of one cultivar in the first growing season, which could be explained by the immaturity of the kernels of this cultivar compared with others in the field trial. Further evaluations by pair-wise comparison using Student’s t-test and analysis of variance (ANOVA) showed that the growing season was the most prominent impact factor driving variation of the metabolite pool. An increased understanding of metabolic variation was achieved by analysis of a second sample set comprising one cultivar grown for 3 years at four locations. The applied GC/MS-based metabolite profiling demonstrated the natural variation in maize grain metabolite pools resulting from the interplay of environment, season, and genotype.  相似文献   

16.
Cypermethrin (CP) is widely used for controlling agricultural and indoor vermin. Previous studies have reported the stereoselective difference of CP in biological activities. However, little is known about their potential mechanisms between metabolic phenotypes and endocrine-disrupting effects. Herein, nuclear magnetic resonance (NMR)-based metabolomics combining metabolite identification and pathway analysis were applied to evaluate the stereoselective metabolic cdisorders induced by CP isomers in human adrenocortical carcinoma cells (H295R) culture medium. Then, gene expression levels related to disturbed metabolic pathways were assessed to verify according to metabolic phenotypes. Metabolomics profiles showed that [(S)-cyano(3-phenoxyphenyl)methyl](1R,3R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate [(1R,3RS)-CP] induced the most significant changes in metabolic phenotypes than did the other stereoisomers. There are 10 differential metabolites (isoleucine, valine, leucine, ethanol, alanine, acetate, aspartate, arginine, lactate, and glucose) as well as two significantly disturbed pathways, including “pyruvate metabolism” and “alanine, aspartate, and glutamate metabolism,” that were confirmed in H295R cells culture medium of (1R,3RS)-CP compared with other stereoisomers. Polymerase chain reaction (PCR) array also confirmed the results of metabolomics. Our results can help to understand the potential mechanisms between the isomer selectivity in metabolic phenotypes and endocrine-disrupting effects. Data provided here not only lend authenticity to the cautions issued by the scientists and researchers but also offer a solution for the balance between environment and political regulations.  相似文献   

17.
Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at −27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism.  相似文献   

18.
A properly functioning organism must maintain metabolic homeostasis. Deleterious mutations degrade organismal function, presumably at least in part via effects on metabolic function. Here we present an initial investigation into the mutational structure of the Caenorhabditis elegans metabolome by means of a mutation accumulation experiment. We find that pool sizes of 29 metabolites vary greatly in their vulnerability to mutation, both in terms of the rate of accumulation of genetic variance (the mutational variance, VM) and the rate of change of the trait mean (the mutational bias, ΔM). Strikingly, some metabolites are much more vulnerable to mutation than any other trait previously studied in the same way. Although we cannot statistically assess the strength of mutational correlations between individual metabolites, principal component analysis provides strong evidence that some metabolite pools are genetically correlated, but also that there is substantial scope for independent evolution of different groups of metabolites. Averaged over mutation accumulation lines, PC3 is positively correlated with relative fitness, but a model in which metabolites are uncorrelated with fitness is nearly as good by Akaike's Information Criterion.  相似文献   

19.
This study was intended to analyze the metabolic pathway of Rumex obtusifolius L. (Broad-leaved dock), destructive weeds worldwide, in relation to major environmental factors (light and temperature). It was found that R. obtusifolius can be classified as plants in accumulating major organic acids such as oxalate in leaves and citrate in stems (Miyagi et al., Metabolomics 6:146–155 2010). The organ specific accumulation of certain metabolites was dissected by metabolomics approach in relation to metabolic pathway. Light or dark experiments showed that in the case of the oxalate accumulation, the major or the most dominated pathway was found to be the citrate-isocitrate-oxalate shunt. Furthermore, under the dark and/or low temperature (5°C) leaves showed sustainable growth with normal accumulation of TCA metabolites. Unlike leaves, there was a different pattern of metabolite accumulation in stems. Other metabolites such as amino acids also showed the organ specific alterations under the different ambient environments.  相似文献   

20.
Plants are the primary producers of food for human being. Their intracellular environment alternation is influenced by abiotic stress factors such as drought, heat and soil salinity. Aeluropus lagopoides is a strong halophyte that grows with ease under high saline muddy banks of creeks of Gujarat, India. To study the response of salinity on metabolite changes in Aeluropus, three treatments, i.e. control, salinity and recovery, were selected for both shoot and root tissue. The cytosolic metabolite state was analysed by molecular chemical derivatization gas chromatography mass profiling. During saline treatment, significant increase of compatible solutes in shoot and root tissue was observed as compared to control. Subsequently, metabolic concentration decreased under recovery conditions. The metabolites like amino acids, organic acids and polyols were significantly detected in both shoot and root of Aeluropus under salinity. The metabolites like proline, aspartic acid, glycine, succinic acid and glycolic acid were significantly upregulated under stress. The salicylic acid was found to play a role in maintaining the polyols level by its down-regulation during salinity. The principle component analysis of all detected metabolites in both shoot and root showed that metabolites expressed under salinity (component 1) were highly variable, while metabolites expressed under recovery (component 2) were comparatively less variable as compared to control. The evolved intracellular compartmentalization of amino acids, organic acids and polyols in A. lagopoides can be a hallmark to sustaining at high salinity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号