首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships among and within the main lineages of the order Clupeiformes have been explored in few morphological studies and still remain poorly understood. Using whole mitogenome sequences, we inferred the relationships among 25 clupeiform species, sampled from each clupeiform family and subfamily, and a large selection of non-clupeiform teleosts. Our character sets, including unambiguously aligned, concatenated mitogenome sequences that we have divided into four (1st and 2nd codon positions, tRNA genes, and rRNA genes) or five partitions (same as before plus the transversions at 3rd codon positions, using 'RY' coding), were analyzed by the partitioned Bayesian method. The result strongly supported the monophyly of the Clupeiformes within the Otocephala, with Denticeps clupeoides as the sister group of a clade comprising all the remaining clupeiforms species (= suborder Clupeoidei). Within the Clupeoidei, the family Engraulidae was the sister group of the remaining taxa, comprising members of Sundasalangidae, Pristigasteridae, Clupeidae and Chirocentridae. Relationships among the latter four families remained ambiguous. In particular, the position of the Chirocentridae was difficult to estimate possibly owing to its higher molecular evolutionary rate. Of the five subfamilies in the family Clupeidae, monophylies of three (Alosinae, Clupeinae and Dorosomatinae) were statistically rejected. Instead, our mitogenomic data provide strong support for new clades within the Clupeidae, some of which are composed of members of more than one of the previously accepted subfamilies.  相似文献   

2.
Phylogenetic relationships within the diverse beetle superfamily Cucujoidea are poorly known. The Cerylonid Series (C.S.) is the largest of all proposed superfamilial cucujoid groups, comprising eight families and representing most of the known cucujoid species diversity. The monophyly of the C.S., however, has never been formally tested and the higher-level relationships among and within the constituent families remain equivocal. Here we present a phylogenetic study based on 18S and 28S rDNA for 16 outgroup taxa and 61 C.S. ingroup taxa, representing seven of the eight C.S. families and 20 of 39 subfamilies. We test the monophyly of the C.S., investigate the relationships among the C.S. families, and test the monophyly of the constituent families and subfamilies. Phylogenetic reconstruction of the combined data was achieved via standard static alignment parsimony analyses, Direct Optimization using parsimony, and partitioned Bayesian analysis. All three analyses support the paraphyly of Cucujoidea with respect to Tenebrionoidea and confirm the monophyly of the C.S. The C.S. families Bothrideridae, Cerylonidae, Discolomatidae, Coccinellidae and Corylophidae are supported as monophyletic in all analyses. Only the Bayesian analysis recovers a monophyletic Latridiidae. Endomychidae is recovered as polyphyletic in all analyses. Of the 14 subfamilies with multiple terminals in this study, 11 were supported as monophyletic. The corylophid subfamily Corylophinae and the coccinellid subfamilies Chilocorinae and Scymninae are recovered as paraphyletic. A sister grouping of Anamorphinae+Corylophidae is supported in all analyses. Other taxonomic implications are discussed in light of our results.  相似文献   

3.
Lebedev, V.S., Bannikova, A.A., Pagès, M., Pisano, J., Michaux, J.R. & Shenbrot, G.I. (2012). Molecular phylogeny and systematics of Dipodoidea: a test of morphology‐based hypotheses. —Zoologica Scripta, 42, 231–249. The superfamily Dipodoidea (Rodentia, Myomorpha) in its current interpretation contains a single family subdivided into six subfamilies. Four of them include morphologically specialized bipedal arid‐dwelling jerboas (Dipodinae – three‐toed jerboas, Allactaginae – five‐toed jerboas, Cardiocraniinae – pygmy jerboas and Euchoreutinae – long‐eared jerboas), the other two are represented by more generalized quadrupedal taxa (Zapodinae – jumping mice and Sminthinae – birch mice). Despite considerable effort from morphologists, the taxonomy as well as the phylogeny of the Dipodoidea remains controversial. Strikingly, molecular approach has never been envisaged to investigate these questions. In this study, the phylogenetic relationships among the main dipodoid lineages were reconstructed for the first time using DNA sequence data from four nuclear genes (IRBP, GHR, BRCA1, RAG1). No evidence of conflict among genes was revealed. The same robustly supported tree topology was inferred from the concatenated alignment whatever the phylogenetic methods used (maximum parsimony, maximum‐likelihood and Bayesian phylogenetic methods). Sminthinae branches basally within the dipodoids followed by Zapodinae. Monophyletic Cardiocraniinae is sister to all other jerboas. Within the latter, the monophyly of both Dipodinae and Allactaginae is highly supported. The relationships between Dipodinae, Allactaginae and Euchoreutinae should be regarded as unresolved trichotomy. Morphological hypotheses were confronted to findings based on the presented molecular data. As a result, previously proposed sister group relationships between Euchoreutes and Sicista, Paradipus and Cardiocraniinae as well as the monophyly of Cardiocaniinae + Dipodinae were rejected. However, the latter association is consistently supported by most morphological analyses. The basis of the obvious conflict between genes and morphology remains unclear. Suggested modifications to the taxonomy of Dipodoidea imply recognition of three families: Sminthidae, Zapodidae and Dipodidae, the latter including Cardiocraniinae, Euchoreutinae, Allactaginae and Dipodinae as subfamilies.  相似文献   

4.
The first cladistic analysis of phylogeny in the class Scaphopoda (Steiner 1992a,1996) examined relationships among family and selected sub-family taxa using morphological data. A preferred/ consensus tree of relationships illustrated monophyly of the orders Dentaliida and Gadilida, partial resolution among dentaliid families, and complete resolution among gadilid taxa. However, several alternative replications of the analysis, including use of a revised data matrix, did not produce the reported tree number or level of resolution; in all cases, monophyly of the Dentaliida was not supported by strict consensus of resultant parsimonious trees. Reanalysis, using unordered characters and outgroup rooting, only clearly resolves monophyly of the Gadilida and the sister relationship of the Entalinidae with the remaining gadilid families. These analyses emphasize the need for more comparative data and thorough parsimony analysis in scaphopod cladistic phylogenetics, as relationships in this class are still some way from resolution.  相似文献   

5.
Tetraodontiform fishes (e.g., triggerfishes, boxfishes, pufferfishes, and giant ocean sunfishes) have long been recognized as a monophyletic group. Morphological analyses have resulted in conflicting hypotheses of relationships among the tetraodontiform families. Molecular data from the single-copy nuclear gene RAG1 and from two mitochondrial ribosomal genes, 12S and 16S, were used to test these morphology-based hypotheses. Total evidence (RAG1+12S+16S), RAG1-only, and mitochondrial-only analyses were performed using both maximum parsimony and Bayesian criteria. Total evidence and RAG1-only analyses recover a monophyletic Tetraodontiformes. However, the relationships recovered within the order differ, and none completely conform to previous hypotheses. Analysis of mitochondrial data alone fails to recover a monophyletic Tetraodontiformes and therefore does not support any of the morphology-based topologies. The RAG1 data appear to give the best estimate of tetraodontiform phylogeny, resulting in many strongly supported nodes and showing a high degree of congruence between both parsimony and Bayesian analyses. All analyses recover every tetraodontiform family for which more than one representative is included as a strongly supported monophyletic group. Balistidae and Monacanthidae are recovered as sister groups with robust support in every analysis, and all analyses except the Bayesian analyses of the mitochondrial data alone recover a strongly supported sister-group relationship between Tetraodontidae and Diodontidae. Many of the intrafamilial relationships recovered from the molecular data presented here corroborate previous morphological hypotheses.  相似文献   

6.
Nucleotide sequences of the mitochondrial protein coding cytochrome b (cyt b; 650 bp) and small-subunit 12S ribosomal RNA (approximately 350 bp) genes were used in analyses of phylogenetic relationships among extant phrynosomatid sand lizards, including an examination of competing hypotheses regarding the evolution of "earlessness." Sequences were obtained from all currently recognized species of sand lizards as well as representatives of the first and second outgroups and analyzed using both parsimony and likelihood methods. The cyt b data offer strong support for relationships that correspond with relatively recent divergences and moderate to low support for relationships reflecting more ancient divergences within the clade. These data support monophyly of the "earless" taxa, the placement of Uma as the sister taxon to the other sand lizards, and monophyly of all four taxa traditionally ranked as genera. All well-supported relationships in the 12S phylogeny are completely congruent with well-supported relationships in the cyt b phylogeny; however, the 12S data alone provide very little support for deeper divergences. Phylogenetic relationships within species are concordant with geography and suggest patterns of phylogeographic differentiation, including the conclusion that at least one currently recognized species (Holbrookia maculata) actually consists of more than one species. By independently optimizing likelihood model parameters for various subsets of the data, we found that nucleotide substitution processes vary widely between genes and among the structural and functional regions or classes of sites within each gene. Therefore, we compared competing phylogenetic hypotheses, using parameter estimates specific to those subsets, analyzing the subsets separately and in various combinations. The hypothesis supported by the cyt b data was favored over rival hypotheses in all but one of the five comparisons made with the entire data set, including the set of partitions that best explained the data, although we were unable to confidently reject (P < 0.05) alternative hypotheses. Our results highlight the importance of optimizing models and parameter estimates for different genes or parts thereof--a strategy that takes advantages of the strengths of both combining and partitioning data.  相似文献   

7.
8.
We performed a comparative study of partial rDNA sequences from a variety of Coleoptera taxa to construct an annotated alignment based on secondary structure information, which in turn, provides improved rRNA structure models useful for phylogenetic reconstruction. Subsequent phylogenetic analysis was performed to test monophyly and interfamilial relationships of the megadiverse plant feeding beetle group known as ‘Phytophaga’ (Curculionoidea and Chrysomeloidea), as well as to discover their closest relatives among the Cucujiformia. Parsimony and Bayesian analyses were performed based on the structural alignment of segments of 18S rRNA (variable regions V4‐V5, V7‐V9) and 28S rRNA (expansion segment D2). A total of 104 terminal taxa of Coleoptera were included: 96 species of Cucujiformia beetles, representing the families and most ‘subfamilies’ of weevils and chrysomeloids (Phytophaga), as well as several families of Cleroidea, Tenebrionoidea and Cucujoidea, and eight outgroups from three other polyphagan series: Scarabaeiformia, Elateriformia and Bostrichiformia. The results from the different methods of analysis agree — recovering the monophyly of the ‘Phytophaga’, including Curculionoidea and Chrysomeloidea as sister groups. The curculionoid and chrysomeloid phylogeny recovered from the aligned 18S and 28S rDNA segments, which is independent of morphological data, is in agreement with recent hypotheses or concepts based on morphological evidence, particularly with respect to familial relationships. Our results provide clues about the evolutionary origin of the phytophagan beetles within the megaclade Cucujiformia, suggesting that the sister group of ‘Curculionoidea + Chrysomeloidea’ is a clade of the ‘Cucujoidea’, represented in this study by species in Boganiidae, Erotylidae, Nitidulidae, Cucujidae and Silvanidae. The Coccinellidae and Endomychidae are not grouped with the latter, and the remaining terminal taxa are nested in Tenebrionoidea and Cleroidea. We propose that the combination of structurally aligned ribosomal RNA gene regions 18S (V4‐V5, V7‐V9) and 28S (D2) are useful in testing monophyly and resolving relationships among beetle superfamilies and families.  相似文献   

9.
Cytochrome b and Bayesian inference of whale phylogeny   总被引:2,自引:0,他引:2  
In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the first time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly of all but one family level taxa within Cetacea, and most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.  相似文献   

10.
Ants are one of the most ecologically and numerically dominant families of organisms in almost every terrestrial habitat throughout the world, though they include only about 1% of all described insect species. The development of eusociality is thought to have been a driving force in the striking diversification and dominance of this group, yet we know little about the evolution of the major lineages of ants and have been unable to clearly determine their primitive characteristics. Ants within the subfamily Amblyoponinae are specialized arthropod predators, possess many anatomically and behaviorally primitive characters and have been proposed as a possible basal lineage within the ants. We investigate the phylogenetic relationships among the members of the subfamily, using nuclear 28S rDNA sequence data. Outgroups for the analysis include members of the poneromorph and leptanillomorph (Apomyrma, Leptanilla) ant subfamilies, as well as three wasp families. Parsimony, maximum likelihood, and Bayesian analyses provide strong support for the monophyly of a clade containing the two genera Apomyrma+Mystrium (100% bpp; 97% ML bs; and 97% MP bs), and moderate support for the monophyly of the Amblyoponinae as long as Apomyrma (Apomyrminae) is included (87% bpp; 57% ML bs; and 76% MP bs). Analyses did not recover evidence of monophyly of the Amblyopone genus, while the monophyly of the other genera in the subfamily is supported. Based on these results we provide a morphological diagnosis of the Amblyoponinae that includes Apomyrma. Among the outgroup taxa, Typhlomyrmex grouped consistently with Ectatomma, supporting the recent placement of Typhlomyrmex in the Ectatomminae. The results of this present study place the included ant subfamilies into roughly two clades with the basal placement of Leptanilla unclear. One clade contains all the Amblyoponinae (including Apomyrma), Ponerinae, and Proceratiinae (Poneroid clade). The other clade contains members from subfamilies Cerapachyinae, Dolichoderinae, Ectatomminae, Formicinae, Myrmeciinae, and Myrmicinae (Formicoid clade).  相似文献   

11.
Phylogenetic relationships among nematodes of the strongylid superfamily Metastrongyloidea were analyzed using partial sequences from the large-subunit ribosomal RNA (LSU rRNA) and small-subunit ribosomal RNA (SSU rRNA) genes. Regions of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction, directly sequenced, aligned, and phylogenies inferred using maximum parsimony. Phylogenetic hypotheses inferred from the SSU rRNA gene supported the monophyly of representative taxa from each of the 7 currently accepted metastrongyloid families. Metastrongyloid taxa formed the sister group to representative trichostrongyloid sequences based on SSU data. Sequences from either the SSU or LSU RNA regions alone provided poor resolution for relationships within the Metastrongyloidea. However, a combined analysis using sequences from all rDNA regions yielded 3 equally parsimonious trees that represented the abursate Filaroididae as polyphyletic, Parafilaroides decorus as the sister species to the monophyletic Pseudaliidae, and a sister group relationship between Oslerus osleri and Metastrongylus salmi. Relationships among 3 members of the Crenosomatidae, and 1 representative of the Skrjabingylidae (Skrjabingylus chitwoodorum) were not resolved by these combined data. However, members of both these groups were consistently resolved as the sister group to the other metastrongyloid families. These relationships are inconsistent with traditional classifications of the Metastrongyloidea and existing hypotheses for their evolution.  相似文献   

12.
A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA. Consistent with prior morphological hypotheses, we find strong evidence for monophyly of subclass Discomedusae, order Coronatae, rhizostome suborder Kolpophorae and superfamilies Actinomyariae, Kampylomyariae, Krikomyariae, and Scapulatae. Eleven of the 19 currently recognized scyphozoan families are robustly monophyletic, and we suggest recognition of two new families pending further analyses. In contrast to long-standing morphological hypotheses, the phylogeny shows coronate family Nausithoidae, semaeostome family Cyaneidae, and rhizostome suborder Daktyliophorae to be nonmonophyletic. Our analyses neither strongly support nor strongly refute monophyly of order Rhizostomeae, superfamily Inscapulatae, and families Ulmaridae, Catostylidae, Lychnorhizidae, and Rhizostomatidae. These taxa, as well as familial relationships within Coronatae and within rhizostome superfamily Inscapulatae, remain unclear and may be resolved by additional genomic and taxonomic sampling. In addition to clarifying some historically difficult taxonomic questions and highlighting nodes in particular need of further attention, the molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.  相似文献   

13.
Phylogenetic hypotheses among Gadiformes fishes at the suborder, family, and subfamily levels are controversial. To address this problem, we analyze nuclear and mitochondrial DNA (mtDNA) sequences for the most extensive taxonomic sampling compiled to date, representing all of the recognized families and subfamilies in the order (except the monotypic family Lyconidae). Our study sampled 117 species from 46 genera, comprising around 20% of the species described for the order (more than 60% of all genera in the order) and produced 2740 bp of DNA sequence data for each species. Our analysis was successful in confirming the monophyly of Gadiformes and most of the proposed families for the order, but alternative hypotheses of sister-group relationships among families were poorly resolved. Our results are consistent with dividing Gadiformes into 12 families in three suborders, Muraenolepidoidei, Macrouroidei, and Gadoidei. Muraenolepidoidei contains the single family Muraenolepididae. The suborder Macrouroidei includes at least three families: Macrouridae, Macruronidae and Steindachneriidae. Macrouridae is deeply divided into two well-supported subfamilies: Macrourinae and Bathygadinae, suggesting that Bathygadinae may be ranked at the family level. The suborder Gadoidei includes the families: Merlucciidae, Melanonidae, Euclichthyidae, Gadidae, Ranicipitidae, and Bregmacerotidae. Additionally, Trachyrincinae could be ranked at family level including two subfamilies: Trachyrincinae and Macrouroidinae within Gadoidei. Further taxonomic sampling and sequencing efforts are needed in order to corroborate these relationships.  相似文献   

14.
Abstract. The previously unknown phylogenetic relationships among Mantodea (praying mantids) were inferred from DNA sequence data. Five genes (16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase II and histone 3) were sequenced for sixty‐three taxa representing major mantid lineages and outgroups. The monophyly of mantid families and subfamilies was tested under varying parameter settings using parsimony and Bayesian analyses. The analyses revealed the paraphyly of Hymenopodidae, Iridopterygidae, Mantidae, and Thespidae and the monophyly of the Amorphoscelidae subfamily Paraoxypilinae. All represented subfamilies of Iridopterygidae and Mantidae appear paraphyletic. Mantoididae is sister group to the rest of the sampled mantid taxa. Lineages congruent with current subfamilial taxonomy include Paraoxypilinae, Hoplocoryphinae, Hymenopodinae, Acromantinae and Oligonicinae. The mantid hunting strategy is defined as either generalist, cursorial or ambush predators. By mapping hunting strategy onto our phylogeny, we reconstructed the ancestral predatory condition as generalist hunting, with three independent shifts to cursorial hunting and one shift to ambush hunting, associated with the largest radiation of mantid species.  相似文献   

15.
The main goals of this study were to provide a robust phylogeny for the families of the superfamily Curculionoidea, to discover relationships and major natural groups within the family Curculionidae, and to clarify the evolution of larval habits and host-plant associations in weevils to analyze their role in weevil diversification. Phylogenetic relationships among the weevils (Curculionoidea) were inferred from analysis of nucleotide sequences of 18S ribosomal DNA (rDNA; approximately 2,000 bases) and 115 morphological characters of larval and adult stages. A worldwide sample of 100 species was compiled to maximize representation of weevil morphological and ecological diversity. All families and the main subfamilies of Curculionoidea were represented. The family Curculionidae sensu lato was represented by about 80 species in 30 "subfamilies" of traditional classifications. Phylogenetic reconstruction was accomplished by parsimony analysis of separate and combined molecular and morphological data matrices and Bayesian analysis of the molecular data; tree topology support was evaluated. Results of the combined analysis of 18S rDNA and morphological data indicate that monophyly of and relationships among each of the weevil families are well supported with the topology ((Nemonychidae, Anthribidae) (Belidae (Attelabidae (Caridae (Brentidae, Curculionidae))))). Within the clade Curculionidae sensu lato, the basal positions are occupied by mostly monocot-associated taxa with the primitive type of male genitalia followed by the Curculionidae sensu stricto, which is made up of groups with the derived type of male genitalia. High support values were found for the monophyly of some distinct curculionid groups such as Dryophthorinae (several tribes represented) and Platypodinae (Tesserocerini plus Platypodini), among others. However, the subfamilial relationships in Curculionidae are unresolved or weakly supported. The phylogeny estimate based on combined 18S rDNA and morphological data suggests that diversification in weevils was accompanied by niche shifts in host-plant associations and larval habits. Pronounced conservatism is evident in larval feeding habits, particularly in the host tissue consumed. Multiple shifts to use of angiosperms in Curculionoidea were identified, each time associated with increases in weevil diversity and subsequent shifts back to gymnosperms, particularly in the Curculionidae.  相似文献   

16.
Phylogenetic relationships among families of the Scaphopoda (Mollusca)   总被引:1,自引:0,他引:1  
Phylogenetic relationships among families in the molluscan class Scaphopoda were analysed using morphological characters and cladistic parsimony methods. A maximum parsimony analysis of 34 discrete characters, treated as unordered and equally weighted, from nine ingroup terminal taxa produced a single most parsimonious tree; supplementary analyses of tree length frequency distribution and Bremer support indices indicate a strong phylogenetic signal from the data and moderate to minimally supported clades. The traditional major division of the class, the orders Dentaliida and Gadilida, is supported as both taxa are confirmed as monophyletic clades. Within the Dentaliida, two clades are recognized, the first comprised of the families Dentaliidae and Fustiariidae, the second of the Rhabdidae and Calliodentaliidae; together, these groups comprise a third clade, which has the Gadilinidae as sister. Within the Gadilida, a nested series of relationships is found among [Entalinidae, [Pulsellidae, [Wemersoniellidae, Gadilidae]]]. These results lend cladistic support to earlier hypotheses of shared common ancestry for some families, but are at variance with other previous hypotheses of evolution in the Scaphopoda. Furthermore, analysis of constituent Gadilinidae representatives provide evidence for paraphyly of this family. The relationships supported here provide a working hypothesis that the development of new characters and greater breadth of taxonomic sampling can test, with a suggested primary goal of establishing monophyly at the family level.  相似文献   

17.
Phylogenetic relationships among major clades of anuran amphibians were studied using partial sequences of three nuclear protein coding genes, Rag-1, Rag-2, and rhodopsin in 26 frog species from 18 families. The concatenated nuclear data set comprised 2,616 nucleotides and was complemented by sequences of the mitochondrial 12S and 16S rRNA genes for analyses of evolutionary rates. Separate and combined analyses of the nuclear markers supported the monophyly of modern frogs (Neobatrachia), whereas they did not provide support for the monophyly of archaic frog lineages (Archaeobatrachia), contrary to previous studies based on mitochondrial data. The Neobatrachia contain two well supported clades that correspond to the subfamilies Ranoidea (Hyperoliidae, Mantellidae, Microhylidae, Ranidae, and Rhacophoridae) and Hyloidea (Bufonidae, Hylidae, Leptodactylidae, and Pseudidae). Two other families (Heleophrynidae and Sooglossidae) occupied basal positions and probably represent ancient relicts within the Neobatrachia, which had been less clearly indicated by previous mitochondrial analyses. Branch lengths of archaeobatrachians were consistently shorter in all separate analyses, and nonparametric rate smoothing indicated accelerated substitution rates in neobatrachians. However, relative rate tests confirmed this tendency only for mitochondrial genes. In contrast, nuclear gene sequences from our study and from an additional GenBank survey showed no clear phylogenetic trends in terms of differences in rates of molecular evolution. Maximum likelihood trees based on Rag-1 and using only one neobatrachian and one archaeobatrachian sequence, respectively, even had longer archaeobatrachian branches averaged over all pairwise comparisons. More data are necessary to understand the significance of a possibly general assignation of short branches to basal and species-poor taxa by tree-reconstruction algorithms.  相似文献   

18.
In this study, we constructed the first molecular phylogeny of the diverse crab superfamily Majoidea (Decapoda: Pleocyemata: Brachyura), using three loci (16S, COI, and 28S) from 37 majoid species. We used this molecular phylogeny to evaluate evidence for phylogenetic hypotheses based on larval and adult morphology. Our study supports several relationships predicted from larval morphology. These include a monophyletic Oregoniidae family branching close to the base of the tree; a close phylogenetic association among the Epialtidae, Pisidae, Tychidae, and Mithracidae families; and some support for the monophyly of the Inachidae and Majidae families. However, not all majoid families were monophyletic in our molecular tree, providing weaker support for phylogenetic hypotheses inferred strictly from adult morphology (i.e., monophyly of individual families). This suggests the adult morphological characters traditionally used to classify majoids into different families may be subject to convergence. Furthermore, trees constructed with data from any single locus were more poorly resolved than trees constructed from the combined dataset, suggesting that utilization of multiple loci are necessary to reconstruct relationships in this group.  相似文献   

19.
We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.  相似文献   

20.
Skinks are the largest family of lizards and are found worldwide in a diversity of habitats. One of the larger and more poorly studied groups of skinks includes members of the subfamily Scincinae distributed in sub-Saharan Africa. Sub-Saharan African scincines are one of the many groups of lizards that show limb reduction and loss, and the genus Scelotes offers an excellent opportunity to look at limb loss in a phylogenetic context. Phylogenetic relationships were reconstructed for a total of 52 taxa representing all subfamilies of skinks as well as other Autarchoglossan families using sequence from six gene regions including; 12S, 16S, and cytochrome b (mitochondrial), as well as alpha-Enolase, 18S, and C-mos (nuclear). The family Scincidae is recovered as monophyletic and is the sister taxon to a (Cordylidae+Xantusiidae) clade. Within skinks the subfamily Acontinae is monophyletic and sister group to all remaining skinks. There is no support for the monophyly of the subfamilies Lygosominae and Scincinae, but sub-Saharan African scincines+Feylinia form a well supported monophyletic group. The monophyly of Scelotes is confirmed, and support is found for two geographic groups within the genus. Reconstructions of ancestral states for limb and digital characters show limited support for the reversal or gain of both digits and limbs, but conservative interpretation of the results suggest that limb loss is common, occurring multiple times throughout evolutionary history, and is most likely not reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号