首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
垄作与覆膜对川中丘陵春玉米根系分布及产量的影响   总被引:2,自引:0,他引:2  
通过设置田间试验,研究种植方式(垄作垄播、平作、垄作沟播)与覆膜措施对川中丘陵春玉米根系分布和玉米产量的影响.结果表明: 垄作与覆膜对玉米根系形态影响显著,覆膜显著提高了玉米根长、根表面积和根体积,拔节期覆膜较不覆膜处理分别提高了42.3%、50.0%和57.4%.覆膜提高了各土层和各水平各层次根质量,扩大了根系在土壤垂直和水平方向上的分布,提高了拔节期20~40 cm土层和水平方向上宽行0~20 cm根系比例.种植方式对根系生长和分布的影响因覆膜而异,覆膜下垄作垄播显著提高了各土层根质量和20~40 cm土层根量分配比例,同时提高了水平方向上各层次根量和宽行根系分配比例,总根质量表现为:垄作垄播>平作>垄作沟播;不覆膜下垄作沟播显著提高了窄行0~40 cm根量,吐丝期总根质量表现为:垄作沟播>垄作垄播>平作.从玉米穗部性状和产量看,覆膜降低了玉米秃尖长,提高了穗长、穗粒数、千粒重和产量,覆膜下产量表现为:垄作垄播>平作>垄作沟播;不覆膜下则表现为:垄作沟播>平作>垄作垄播.覆膜下垄作垄播促进了根系特别是深层根质量的增加,同时增加了深层根系和水平20~40 cm根系比例,这是其增产的重要原因;而不覆膜下垄作沟播有利于根系生长,从而提高产量.  相似文献   

2.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

3.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

4.
A study was carried out on the root distribution and root activity of the olive tree (Olea Europaea, L., var. manzanillo) as influenced by drip irrigation and by several soil characteristics such as texture and depth. The experiments were conducted in two plots within a drip-irrigated grove of 20-year-old trees planted at 7×7 m spacing. One soil was a sandy loam, the other a clay-loam. Both cylinder and trench methods were used to determine root distribution. Labelling with 32P was used to determine root activity. Under dryland conditions the adult tree adapted its rooting system, following the installation of a drip system, by concentrating the roots within the wet soil zones near the drippers. The highest root densities occur in those zones, down to a 0.6 m depth, the most abundant being the <0.5 mm diameter roots. The most intensive root activity was also found in that zone. For a given irrigation system, wet soil bulbs are more extensive and therefore root distribution expands to a larger soil volume when the soil is more clayey and with a hard calcareous pan present at about 0.8 m depth which prevents deep drainage.  相似文献   

5.
Root zone solute dynamics under drip irrigation: A review   总被引:19,自引:1,他引:18  
Mmolawa  Khumoetsile  Or  Dani 《Plant and Soil》2000,222(1-2):163-190
Infiltration and subsequent distribution of water and solutes under cropped conditions is strongly dependent on the irrigation method, soil type, crop root distribution, and uptake patterns and rates of water and solutes. This review discusses aspects of soil water and solute dynamics as affected by the irrigation and fertigation methods, in the presence of active plant uptake of water and solutes. Fertigation with poor quality water can lead to accumulation of salts in the root zone to toxic levels, potentially causing deterioration of soil hydraulic and physical properties. The high frequency of application under drip irrigation enables maintenance of salts at tolerable levels within the rooting zone. Plant roots play a major role in soil water and solute dynamics by modifying the water and solute uptake patterns in the rooting zone. Modeling of root uptake of water and solutes is commonly based on incorporating spatial root distribution and root length or density. Other models attempt to construct root architecture. Corn uptake rate and pattern of nitrate nitrogen was determined from field studies of nitrate dynamics under drip irrigation using TDR monitoring. The determined nitrate nitrogen uptake rates are within literature values for corn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Hatching of potato cyst nematodes is induced by root exudates of Solanaceae, such as Solanum sisymbriifolium, and is therefore related to root length distribution of this crop. A mathematical model was derived to relate the hatching potential to root length density (RLD). A series of field experiments was carried out to study actual root length distribution of S. sisymbriifolium in relation to shoot properties and to provide input into the model. Using a modified Poisson distribution formula for the three‐dimensional distribution of roots in a volume of soil, the relation between the zone of influence of hatching agents and the RLD could be derived. On this basis, the minimal RLD was estimated, which is needed to expose 75%, 90% or 95% of cysts to root exudates, as a function of the length of the zone of influence of hatching agents on cysts. The logarithm of the total root length showed a linear relation with the logarithms of above‐ground biomass and with leaf area index. Root diameter distribution was the same for all crops examined and independent of soil depth. Fine roots (<0.4 mm in diameter) constituted around 50% of total root length. Using a zone of influence of 1.00, 0.75 and 0.50 cm around the centre of each root, a minimal RLD for sufficient soil exploration (75%) was estimated. Depth at which that minimal RLD was exceeded was linearly related to total root length (km m?2) and to above‐ground crop biomass, enabling estimations being made of the potential hatching efficacy as related to measurable properties of S. sisymbriifolium crops. The proposed approach to derive potential hatching effects from crop properties needs further validation; particularly, the distance of influence of root exudates is a critical factor.  相似文献   

7.
Summary Non-destructive observations of root growth and distribution can be obtained from counting root intercepts with observation tubers inserted in the root zone. This paper describes the technique of inserting clear acrylic tubes horizontally into large undisturbed and repacked soil cores. Counts of roots intersecting scribed lines on the sides of the tubes were made with a fibrescope. Comparison was made between observation root tubes of different diameter (25 and 38.5 mm).The r2 values for the relationships between root intercept counts and destructively determined values of root length density (RLD) ranged from 0.78 to 0.96. The larger diameter tubes had higher r2 values. Theoretical calibration of the technique does not appear to be possible since analysis indicated that fewer roots intersected the scribed lines on the observation tube than would have been expected from a non-disturbed, randomly distributed root system. It is not known if this discrepancy is due to non-randomness or to an artifact associated with the insertion of the observation tube. Roots were not more prolific at the edge of the soil cores. Comparison of values of root length per unit soil surface area, rates of downward root growth and water uptake rates were within the ranges previously reported for wheat roots of field crops grown on clay soils. Observed root growth and distribution was found to be sensitive to four soil and water treatments imposed. It is concluded that the technique will allow quantitative analysis of root growth and distribution in undisturbed soil cores.  相似文献   

8.
滨海盐碱地棉花成苗的原理与技术   总被引:1,自引:0,他引:1  
董合忠 《生态学杂志》2012,23(2):566-572
成苗是滨海盐碱地植棉的难点,建立和完善成苗技术是盐碱地棉花丰产的关键.本文在回顾前人相关研究的基础上,依据我们在该领域的研究进展,总结评述了土壤根区盐分差异分布、提墒增温、建立膜下温室和采用抗盐种衣剂促进棉花成苗的效应与机制.在土壤耕层平均盐分含量不能减少的情况下,通过诱导盐分在根区的差异分布、适度提高土壤含水量和地温,改善至少部分根区的生态环境,可显著减轻盐害,是促进盐碱地棉花成苗的重要途径.轻度盐碱地平作覆盖、中度和重度盐碱地沟畦覆盖、无灌溉条件下的预覆膜栽培、热量不足地区的短季棉晚播,是促进滨海盐碱地棉花成苗和增产的可靠技术.以上成苗理论与技术为滨海盐碱地棉花一播全苗提供了保障.  相似文献   

9.
滨海盐碱地棉花成苗的原理与技术   总被引:3,自引:1,他引:3  
成苗是滨海盐碱地植棉的难点,建立和完善成苗技术是盐碱地棉花丰产的关键.本文在回顾前人相关研究的基础上,依据我们在该领域的研究进展,总结评述了土壤根区盐分差异分布、提墒增温、建立膜下温室和采用抗盐种衣剂促进棉花成苗的效应与机制.在土壤耕层平均盐分含量不能减少的情况下,通过诱导盐分在根区的差异分布、适度提高土壤含水量和地温,改善至少部分根区的生态环境,可显著减轻盐害,是促进盐碱地棉花成苗的重要途径.轻度盐碱地平作覆盖、中度和重度盐碱地沟畦覆盖、无灌溉条件下的预覆膜栽培、热量不足地区的短季棉晚播,是促进滨海盐碱地棉花成苗和增产的可靠技术.以上成苗理论与技术为滨海盐碱地棉花一播全苗提供了保障.  相似文献   

10.
Alternate partial root zone irrigation (APRI) is a new water-saving irrigation technique. It can reduce irrigation water and transpiration without reduction in crop yield, thus increase water and nutrient use efficiency. Understanding of soil moisture distribution and dynamic under the alternate partial root zone drip irrigation (APDI) can help to develop the efficient irrigation schemes. In this paper, a two-dimensional (2D) root water uptake model was proposed based on soil water dynamic and root distribution of grape vine, and a function of soil evaporation related to soil water content was defined under the APDI. Then the soil water dynamic model of APDI (APRI-model) was developed based on the 2D root water uptake model and soil evaporation function combined with average measured soil moisture content at 0–10 cm soil layer. Soil water dynamic in APDI was respectively simulated by Hydrus-2D model and APRI-model. The simulated soil water contents by two models were compared with the measured value. The results showed that the values of root-mean-square-error (RMSE) range from 0.01 to 0.022 cm3/cm3 for APRI-model, and from 0.012 to 0.031 cm3/cm3 for Hydrus-2D model. The average relative error between the simulated and measured soil water content is about 10% for APRI-model, and from 11% to 29% for Hydrus-2D model, indicating that two models perform well in simulating soil moisture dynamic under the APDI, but the APRI-model is more suitable for modeling the soil water dynamic in the arid region with greater soil evaporation and uneven root distribution.  相似文献   

11.
The effect of application of the fungicide pentachloronitrobenzene (PCNB) at levels between 2 and 50 mg kg–1 soil on root growth, mycorrhizal infection and P uptake was studied in pot culture with oats (Avena sativa cv. Alfred) growing in a rendzina soil low in available P. The soil had been partially sterilized by X-ray, and half of the pots were inoculated with spores of the VAM-fungusGlomus mosseae (indigenous species).Soil irradiation (0.5 Mrad) did not decrease the levels of infection by VAM. Application of PCNB decreased the VAM-infected root length, at 50 mg PCNB kg–1 soil VAM-infected root length was about 12% of the controls. Total root length, however, increased to about 126% of control values at PCNB rates up to 20 mg kg–1 soil, but decreased to 89% of the controls at 50 mg kg–1 soil. Total P-uptake decreased with increasing levels of PCNB and was linearly correlated with infected root length (r=0.92).The stimulation of root growth by PCNB at rates up to 20 mg kg–1 soil is regarded as an indirect effect, brought about by suboptimal P-supply due to inhibition of VA-mycorrhiza. Conversely, the reduction of total root length at 50 mg PCNB kg–1 soil is most likely a direct effect. Due to the phytotoxicity of the fungicide, the contribution of the indigenous VA-mycorrhiza to plant P uptake under field conditions cannot be determined by soil application of PCNB at rates sufficient for complete inhibition of VAM.As inhibition or absence of VAM may lead to compensatory root growth, mycorrhizal dependency ought to be calculated from the amounts of P taken up per unit root length in mycorrhizal and nonmycorrhizal plants, respectively.  相似文献   

12.
The effect of soil strength on the growth of pigeonpea radicles and seedlings was investigated in cores of three clay soils prepared at different water contents and bulk densities in the laboratory.Radicle elongation directly into soil cores was reduced from 50–70 mm d-1 at strengths less than 0.5 MPa to 0 mm d-1 at 3.5–3.7 MPa. The response to soil strength was affected by the water content of the soil, presumably as a result of reduced oxygen availability in wetter soil. This effect was apparent in soils wet to air-filled porosities less than 0.15 m3 m-3.Radicles were more sensitive to high soil strength (>1.5 MPa) than were seedling roots which encountered the same conditions at 60 mm in the profile. Radicle growth ceased at 3.5 MPa which reduced seedling root growth by only 60%.Despite a 60% reduction in root length in the high strength zone, seedling roots compensated in zones of loose soil above and below the compacted layer, and total root length and shoot growth were unaffected. There was no evidence of a root signal response which results in reduced shoot growth in some species in response to high soil strength.The proliferation of roots in surface layers and the delayed penetration of the root system to depth in compacted soil are likely to expose seedlings to a greater risk of water-deficit in the field, particularly under dryland conditions where plants rely on stored subsoil water for growth.  相似文献   

13.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   

14.
The boundary filtration effect of land/water ecotones with reed-bed/ditch systems under water level fluctuations was studied in Baiyangdian Lake of North China. It was found that the changes in reed bed areas which were primarily affected by water level fluctuations and the root channels in the wetland soils together largely determined boundary filtration efficiency. The ecotones displayed the greatest boundary effect at a moderate water level of about 8 m above sea level. The massive root channels in the wetland soils promoted water flowing into the reed beds as far as 8 m horizontally by subsurface in wet years. In dry years, when the water level was below the root channel distribution zone, the lateral water exchange width of ecotones was limited to 0.5 m along the fringe area. It is calculated that, at 8 m water level, the total boundary length of ecotones is 7,273 km and the boundary exchange volume is 5.8 × 106 m3. While at 6.5 m water level, the total boundary length of ecotones is reduced to 2,699 km and the boundary exchange volume is 1.1 × 105 m3. The standard capacity for phosphorus retention was 105.9 and 2.5 tonnes at water levels of 8 and 6.5 m, respectively. This suggests that the boundary filtration effect of reed-bed/ditch wetlands is important for improving the water quality of inland waters, and this effect should be considered in regulating and managing lake water levels.  相似文献   

15.
The objectives of this field experiment were to study the growth characteristics and yield potential of rice plants under non‐flooded irrigation in arid area. Non‐flooded treatments included drip irrigation with plastic mulching treatments (DIs), furrow irrigation with plastic mulching treatment (FIM) and furrow irrigation with non‐mulching treatment (FIN). Conventional flooded cultivation (F) was check treatment (CK). The four drip irrigation treatments differed in the amount of water applied before and after panicle initiation. Root length density, leaf dry weight, shoot dry weight and root activity were generally higher in the non‐flood‐irrigated treatments (especially the drip‐irrigated treatments) than in the flood‐irrigated treatment at mid‐tillering. However, the growth and development of rice plants were limited after jointing in the non‐flooded irrigation treatments. Increasing the root/shoot ratio and root length density in the 20–40 cm depth and decreasing specific root length at 0–20 cm soil layer were important mechanisms for helping the rice plants to adapt to the non‐flooded environmental stresses. Finally, the grain yield in the non‐flooded irrigation treatments was lower than that in the F treatment. These low yields were mainly attributed to the low root length density at 0–20 cm depth and root activity. Generally speaking, the restricted degrees in the DIs were smaller than that in the FIM and FIN treatments. Among the DIs, both the highest grain yield (8223–8900 kg ha?1) and the highest water use efficiency (WUE) (0.63) were observed when the soil water content was kept at ?30 kPa before panicle initiation and at ?15 kPa after panicle initiation (referred to as the DI2 treatment). The yield in the DI2 treatment was not significantly different than that in the flood‐irrigated treatment. However, WUE was 2.5 times higher in the DI2 treatment than in the F treatment. These results suggest that drip irrigation technology can be considered as a better water‐saving cultivation of rice plants in arid region.  相似文献   

16.
地下滴灌条件下三倍体毛白杨根区土壤水分动态模拟   总被引:7,自引:0,他引:7  
在根系分布试验观测的基础上,提出了三倍体毛白杨一维根系吸水模型,在考虑根系吸水情况下利用HYDRUS模型模拟了地下滴灌条件下三倍体毛白杨根区的土壤水分动态,通过田间试验对模型进行验证,并利用HYDRUS研究了不同灌水技术参数对土壤湿润模式的影响.结果表明:在灌溉结束和水分再分布24 h后,土壤含水量模拟结果的相对平均绝对误差(RMAE)分别为7.8%和6.0%,均方根误差(RMSE)分别为0.036和0.026 cm3·cm-3,说明HYDRUS模型能很好地模拟地下滴灌条件下三倍体毛白杨根区的短期土壤水分动态,且所建根系吸水模型合理;与2、4 L·h-1的滴头流速和连续性灌溉相比,流速1 L·h-1和脉冲式灌溉(每隔30 min灌水30 min)能增大土壤湿润体体积,且可以减少水分深层渗漏量,因此,对试验地三倍体毛白杨根区进行地下滴灌应首选流速1 L·h-1的脉冲式灌溉.  相似文献   

17.
Root architecture is of prime importance to assess the process of root plasticity affected by the resource distribution around growth zone of roots. Researches have revealed that roots demonstrate social behavior based on mutual interaction with their neighbors. Root-system architecture may be determined by two types of mechanisms: chemotropism and swarm behavior. Effects of the two mechanisms on the root plasticity attempt to be compared when root is grown under three different resource patches’ distributions using a three-dimensional architectural root model. Resource patches distributions included: (1) a completely random resource set, (2) a layered resource set, and (3) a gradient resource set. Roots length, total uptake, resource contribution rate for unit root length, and roots distribution in soil are analyzed to demonstrate comparison results. No significant differences with root length and soil profiles were observed between the two mechanisms at the three scenarios. For chemotropic mechanism, root uptake was more efficient than that of swarm behavior. For mechanism of swarm behavior, resource contribution rate for unit root length was higher than that for chemotropic mechanism. Swarm behavior may be considered as a working hypothesis and a plastic strategy for development and growth of roots.  相似文献   

18.
袁国富  张佩  薛沙沙  庄伟 《植物生态学报》2012,36(10):1033-1042
分析干旱区深根型荒漠植物的根层土壤水分是揭示荒漠植物与土壤水分关系机理的重要方面。在黑河中游一片风沙侵蚀区域的多枝柽柳(Tamarix ramosissima)人工林地中, 对表层0.3 m到3 m深的土壤不同深度的含水量进行了连续的动态观测。结果显示, 多枝柽柳根系层土壤含水量可以分为明显不同的3层: 浅层(0.2-1.7 m深)相对湿润层、中间(1.7-2.7 m深)相对干层和深层(2.7 m以下)有效含水层。在多枝柽柳生长盛期, 浅层相对湿润层土壤含水量呈现明显的昼夜变化特征, 同时, 在晚上植物根系与浅层土壤之间存在正水势梯度, 这说明存在根系水力提升现象。水力提升是干旱气候下根层浅层土壤含水量保持相对湿润的主要原因, 并因此维系浅层根系的发育, 也为多枝柽柳具备的防风固沙功能提供了可能的解释。据初步估算, 多枝柽柳根系水力提升占每天耗水量的5%-8%, 耗水的主要水分来源仍然是充足的土壤深层有效含水层。  相似文献   

19.
Vertical stratification of plant-available K in vermiculitic soil profiles contributes to a late-season K deficiency that limits cotton (Gossypium hirsutum L.) yields on affected soils. Split-root solution culture and split-pot soil experiments were conducted to determine whether root distribution and cultivar differences in root extension in these stratified profiles result from a compensatory response to localized enrichment with NO3-N, PO4-P, and/or K in the root zone. Compensatory root growth was greatest in response to localized NO3-N enrichment. For two cultivars examined in solution culture, 74% of new root development occurred in the half-pot providing 90% of the total NO3-N supply. Only 60% of cultivar root development occurred in the half-pot providing 90% of the PO4-P. No compensatory root growth was observed in response to localized K enrichment. In the split-pot system, the proportion of total root surface area developing in a half-pot was highly correlated with localized soil NO3-N levels (r2=0.81), while increased K availability in one half of the root zone did not affect root distribution. Mean soil NO3-N supply to the whole root system determined shoot N accumulation (r2=0.97). Shoot K accumulation was not related to soil K availability but was strongly correlated with mean root surface area density (r2=0.86). Cultivar Acala GC510, known to be less sensitive to K deficiency than Acala SJ-2, had significantly larger root diameter in all nutrient-supply environments. Under conditions of K stress, Acala GC510 had increased root branching and allocated greater dry matter to roots relative to shoots than Acala SJ-2. The results demonstrate that K acquisition by cotton is strongly influenced by the quantity and distribution of NO3-N in the root zone through its effects on root proliferation, and that distinct cultivar differences associated with crop performance on low K soils can be detected in short-term, solution culture growth systems.  相似文献   

20.
Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown inconsistent patterns between biomes. In arid lands, plant productivity is limited by water and N availability so it is expected that changes in these factors will affect fine root dynamics. The objectives of this study were to quantify the effects of increased summer precipitation and N deposition on fine root dynamics in a Mojave Desert ecosystem during a 2‐year field experiment using minirhizotron measurements. Root length density, production, and mortality were measured in field plots in the Mojave Desert receiving three 25 mm summer rain events and/or 40 kg N ha?1 yr?1. Increased summer precipitation and N additions did not have an overall significant effect on any of the measured root parameters. However, differences in winter precipitation resulting from interannual variability in rainfall appeared to affect root parameters with root production and turnover increasing following a wet winter most likely due to stimulation of annual grasses. In addition, roots were distributed more deeply in the soil following the wet winter. Root length density was initially higher under canopies compared to canopy interspaces, but converged toward the end of the study. In addition, roots tended to be distributed more deeply into the soil in canopy interspace areas. Results from this study indicated that increased summer precipitation and N deposition in response to climate change and urbanization are not likely to affect fine root dynamics in these Mojave Desert ecosystems, despite studies showing aboveground plant physiological responses to these environmental perturbations. However, changes in the amount and possibly distribution of winter precipitation may affect fine root dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号