首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of polymorphic genes regulating inflammatory diseases may unravel crucial pathogenic mechanisms. Initial steps to map such genes using linkage analysis in F(2) intercross or backcross populations, however, result in broad quantitative trait loci (QTLs) containing hundreds of genes. In this study, an advanced intercross line in combination with congenic strains, was used to fine-map Eae18 on rat chromosome 10 in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE). Myelin oligodendrocyte glycoprotein-induced EAE is a chronic relapsing disease that closely mimics key features of multiple sclerosis. Congenic DA.ACI rat strains localized Eae18 to an approximately 30-Mb large region. Fine-mapping was then performed in an advanced intercross line consisting of a (DA x PVG.1AV1)F(7) intercross, resulting in two adjacent EAE-regulating QTLs designated Eae18a and Eae18b. The two QTLs span 5.5 and 3 Mb, respectively, and the 3-Mb Eae18b contains as few as 10 genes, including a cluster of chemokine genes (CCL1, CCL2, CCL7, and CCL11). Eae18a and Eae18b are syntenic to human chromosome 17p13 and 17q11, respectively, which both display linkage to multiple sclerosis. Thus, Eae18 consists of at least two EAE-regulating genes, providing additional evidence that clustering of disease-regulating genes in QTLs is an important phenomenon. The overlap between Eae18a and Eae18b with previously identified QTLs in humans and mice further supports the notion that susceptibility alleles in inflammatory disease are evolutionary conserved between species.  相似文献   

2.
To investigate effects of a 16.8-Mb region on rat chromosome 4q42-43 on encephalomyelitis, we performed a high-resolution mapping using a 10th generation advanced intercross line between the susceptible DA strain and the MHC identical but resistant PVG.1AV1 strain. Clinical signs of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) developed in 29% of 772 F(10) rats. Three regions controlling disease, Eae20, Eae21, and Eae22, were mapped using 15 microsatellite markers spanning 16.8 Mb. Eae20 was a major genetic determinant within the region whereas Eae21 modified disease severity. Eae22 was identified as an epistatic region because it only displayed an effect together with Piebald Virol Glaxo (PVG) alleles on Eae20. Disease down-regulation by PVG alleles in the telomeric part of Eae20 was also demonstrated in DA rats made congenic for a approximately 1.44-Mb chromosomal region from PVG. As the region containing Eae20-Eae22 also regulates arthritis, together with the fact that the syntenic mouse 6F(2)-F(3) region regulates experimental lupus and diabetes, and the syntenic human 12p13.31-13.2 region regulates multiple sclerosis and rheumatoid arthritis, the present data point to genes that control several inflammatory diseases. The pairscan analyses of interaction, which here identified Eae22, are novel in the encephalomyelitis field and of importance in the design of further studies of this region in other diseases and species. The limited number of genes identified in Eae20, Eae21, and Eae22 enables focused examination of their relevance in mechanistic animal studies and screening of their association to human diseases.  相似文献   

3.
The immunization of inbred Dark Agouti (DA) rats with an emulsion containing homogenized spinal cord and CFA induces chronic relapsing experimental autoimmune encephalomyelitis (EAE), a disease with many similarities to multiple sclerosis. We report here the first genome-wide search for quantitative trait loci regulating EAE in the rat using this model. We identified one quantitative trait locus on chromosome 9, Eae4, in a [DA(RT1av1) x BN(RT1n)]F2 intercross showing linkage to disease susceptibility and expression of mRNA for the proinflammatory cytokine IFN-gamma in the spinal cord. Eae4 had a larger influence on disease incidence among rats that were homozygous for the RT1av1 MHC haplotype (RT1av1 rats) compared with RT1n/av1 rats, suggesting an interaction between Eae4 and the MHC. Homozygosity for the DA allele at markers in Eae4 and in the MHC was sufficient for EAE. Thus, Eae4 is a major genetic factor determining susceptibility to EAE in this cross of DA rats. In addition, there was support for linkage to phenotypes of EAE on chromosomes 1, 2, 5, 7, 8, 12, and 15. The chromosome 12 region has been shown previously to predispose DA rats to arthritis, and the chromosome 2 region is syntenic to Eae3 in mice. We conclude that Eae4 and probably the other identified genome regions harbor genes regulating susceptibility to neuroinflammatory disease. The identification and functional characterization of these genes may disclose critical events in the pathogenesis of multiple sclerosis; understanding these events could be essential for the development of new therapies against the disease.  相似文献   

4.
Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in rats that closely mimics many clinical and histopathological aspects of multiple sclerosis. Non-MHC quantitative trait loci regulating myelin oligodendrocyte glycoprotein-induced EAE have previously been identified in the EAE-permissive strain, DA, on rat chromosomes 4, 10, 15, and 18. To find any additional gene loci in another well-known EAE-permissive strain and thereby to assess any genetic heterogeneity in the regulation of the disease, we have performed a genome-wide linkage analysis in a reciprocal (LEW.1AV1 x PVG.1AV1) male/female F(2) population (n = 185). We examined reciprocal crosses, but no parent-of-origin effect was detected. The parental rat strains share the RT1(av1) MHC haplotype; thus, non-MHC genes control differences in EAE susceptibility. We identified Eae16 on chromosome 8 and Eae17 on chromosome 13, significantly linked to EAE phenotypes. Two loci, on chromosomes 1 and 17, respectively showed suggestive linkage to clinical and histopathological EAE phenotypes. Eae16 and Eae17 differ from those found in previously studied strain combinations, thus demonstrating genetic heterogeneity of EAE. Furthermore, we detected a locus-specific parent-of-origin effect with suggestive linkage in Eae17. Further genetic and functional dissection of these loci may disclose critical disease-regulating molecular mechanisms.  相似文献   

5.
Eae5 in rats was originally identified in two F(2) intercrosses, (DA x BN) and (E3 x DA), displaying linkage to CNS inflammation and disease severity in experimental autoimmune encephalomyelitis (EAE), respectively. This region overlaps with an arthritis locus, Pia4, which was also identified in the (E3 x DA) cross. Two congenic strains, BN.DA-Eae5 and BN.DA-Eae5.R1, encompassing the previously described Eae5 and Pia4, were established. DA alleles within the chromosome 12 fragment conferred an increase in disease susceptibility as well as increased inflammation and demyelination in the CNS as compared with BN alleles. To enable a more precise fine mapping of EAE regulatory genes, we used a rat advanced intercross line between the EAE-susceptible DA strain and the EAE-resistant PVG.1AV1 strain. Linkage analysis performed in the advanced intercross line considerably narrowed down the myelin oligodendrocyte glycoprotein-EAE regulatory locus (Eae5) to a approximately 1.3-megabase region with a defined number of candidate genes. In this study we demonstrate a regulatory effect of Eae5 on MOG-EAE by using both congenic strains as well as fine mapping these effects to a region containing Ncf-1, a gene associated with arthritis. In addition to structural polymorphisms in Ncf-1, both sequence polymorphisms and expression differences were identified in CLDN4. CLDN4 is a tight junction protein involved in blood-brain barrier integrity. In conclusion, our data strongly suggests Ncf-1 to be a gene shared between two organ-specific inflammatory diseases with a possible contribution by CLDN4 in encephalomyelitis.  相似文献   

6.
Multiple sclerosis (MS) and its animal model, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), share a complex genetic predisposition with contributions from the major histocompatibility complex class II genes and many other genes. Linkage mapping in F(2) crosses between the susceptible DA rat strain and the resistant ACI or BN rat strains in various models of autoimmune neuroinflammation have repeatedly displayed suggestive linkage to a region on rat chromosome 15. A direct study of this region was undertaken in congenic strains by transferring resistant ACI alleles to the susceptible DA background. Phenotypic analysis demonstrated lower maximal and cumulative EAE scores in the DA.ACI-D15Rat6-D15Rat71 (C15), DA.ACI-D15Rat6-D15Rat48, D15Rat126-D15Rat71 (C15R3b), and DA.ACI-D15Rat23-D15rat71 (C15R4) strains compared to the parental DA rat strain. Linkage analysis was then performed in a (DA x PVG.AV1)F(7) advanced intercross line, resulting in a LOD score of 4.7 for the maximal EAE score phenotype at the peak marker D15Rat71 and a confidence interval of 13 Mb, overlapping with the congenic fragment defined by the C15R3b and the C15R4 strains. Thus, a new MOG-EAE locus with the designation Eae19 is identified on rat chromosome 15. There are 32 confirmed or predicted genes in the confidence interval, including immune-responsive gene 1 and neuronal ceroid lipofuscinose gene 5. Definition of loci such as Eae19 enables the characterization of genetically regulated, evolutionary conserved disease pathways in complex neuroinflammatory diseases.  相似文献   

7.
Gene-Expression Profiling of Experimental Autoimmune Encephalomyelitis   总被引:3,自引:0,他引:3  
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that serves as an experimental tool for studying the etiology, pathogenesis, as well as new therapeutic approaches of multiple sclerosis (MS). EAE is a polygenic chronic inflammatory demyelinating disease of the nervous system that involves the interaction between genetic and environmental factors. Previous studies have identified multiple quantitative trait loci (QTL) controlling different aspects of disease pathogenesis. However, progress in identifying new susceptibility genes outside the MHC locus has been slow. With the advent of new global methods for genetic analysis such as large-scale sequencing, gene expression profiling combined with classic linkage analysis and congenic and physical mapping progress is considerably accelerating. Here we review our preliminary work on the use of gene expression mapping to identify new putative genetic pathways contributing to the pathogenesis of EAE.  相似文献   

8.

Background

To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes.

Methodology/Principal Findings

We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2.

Conclusions/Significance

We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.  相似文献   

9.
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS. Recent advances in whole-genome screening tools have enabled discovery of several MS risk genes, the majority of which have known immune-related functions. However, disease heterogeneity and low tissue accessibility hinder functional studies of established MS risk genes. For this reason, the MS model experimental autoimmune encephalomyelitis (EAE) is often used to study neuroinflammatory disease mechanisms. In this study, we performed high-resolution linkage analysis in a rat advanced intercross line to identify an EAE-regulating quantitative trait locus, Eae29, on rat chromosome 1. Eae29 alleles from the resistant strain both conferred milder EAE and lower production of proinflammatory molecules in macrophages, as demonstrated by the congenic line, DA.PVG-Eae29 (Dc1P). The soluble IL-22R α2 gene (Il-22ra2) lies within the Eae29 locus, and its expression was reduced in Dc1P, both in activated macrophages and splenocytes from immunized rats. Moreover, a single nucleotide polymorphism located at the end of IL-22RA2 associated with MS risk in a combined Swedish and Norwegian cohort comprising 5019 subjects, displaying an odds ratio of 1.26 (p = 8.0 × 10(-4)). IL-22 and its receptors have been implicated in chronic inflammation, suggesting that IL-22RA2 regulates a central immune pathway. Through a combined approach including genetic and immunological investigation in an animal model and large-scale association studies of MS patients, we establish IL-22RA2 as an MS risk gene.  相似文献   

10.
Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin(+) blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.  相似文献   

11.
Genetic susceptibility to multiple sclerosis (MS) is associated with the MHC located on chromosome 6p21. This signal maps primarily to a 1-Mb region encompassing the HLA class II loci, and it segregates often with the HLA-DQB1*0602, -DQA1*0102, -DRB1*1501, -DRB5*0101 haplotype. However, the identification of the true predisposing gene or genes within the susceptibility haplotype has been handicapped by the strong linkage disequilibrium across the locus. African Americans have greater MHC haplotypic diversity and distinct patterns of linkage disequilibrium, which make this population particularly informative for fine mapping efforts. The purpose of this study was to establish the telomeric boundary of the HLA class II region affecting susceptibility to MS by assessing genetic association with the neighboring HLA-DRB5 gene as well as seven telomeric single nucleotide polymorphisms in a large, well-characterized African American dataset. Rare DRB5*null individuals were previously described in African populations. Although significant associations with both HLA-DRB1 and HLA-DRB5 loci were present, HLA-DRB1*1503 was associated with MS in the absence of HLA-DRB5, providing evidence for HLA-DRB1 as the primary susceptibility gene. Interestingly, the HLA-DRB5*null subjects appear to be at increased risk for developing secondary progressive MS. Thus, HLA-DRB5 attenuates MS severity, a finding consistent with HLA-DRB5's proposed role as a modifier in experimental autoimmune encephalomyelitis. Additionally, conditional haplotype analysis revealed a susceptibility signal at the class III AGER locus independent of DRB1. The data underscore the power of the African American MS dataset to identify disease genes by association in a region of high linkage disequilibrium.  相似文献   

12.
The aspermia mutation of the rat exhibits male sterility caused by arrest of spermatogenesis, which is controlled by an autosomal single recessive gene (as). The as locus has been mapped on rat chromosome 12. We recently identified a causative mutation for the aspermia phenotype of the as homozygous rats in the gene encoding Fkbp6, a member of the immunophilins FK506 binding proteins. In this paper, we report the fine mapping of the as locus by linkage analysis combined with comparative mapping using rat, mouse, and human genomic sequences and expression analysis of genes located in the as region. We constructed a fine linkage map of the region of rat chromosome 12 close to the as locus by using 13 microsatellite markers and localized the as locus to a 1.0-cM interval. Comparison of the linkage map with physical maps of rat, mouse, and human refined the as critical region in a 2.2-Mb segment of the rat physical map between the D12Nas3 and D12Nas8 genes, which includes the Fkbp6 gene. A centromeric part of this segment corresponds to the region commonly deleted in Williams syndrome, a human complex developmental disorder, on human chromosome 7q11.23. The expression analysis of 23 genes located on the 2.2-Mb segments in various mouse tissues identified genes exclusively or strongly expressed in the testis.  相似文献   

13.
Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in rats closely mimics the human disease multiple sclerosis (MS). As in MS, genetic predisposition to MOG-EAE is regulated by both MHC and non-MHC genes. Based on disease regulatory influences on MOG-EAE on chromosome 10 in an F2 cross between susceptible DA and resistant ACI rats, we have now isolated this locus in a congenic rat strain to enable further dissection of disease mechanisms. This region is of particular interest, since it is homologous to human 17q for which human whole-genome scans have indicated harbors genes regulating susceptibility to MS. Phenotypic comparison between DA and the congenic DA.ACI-D10Rat2-D10Rat29 strain confirms that the chromosomal segment harbors gene(s) conferring strong protection against MOG-EAE. Furthermore, resistance to EAE in this congenic strain is associated with absence or a low level of inflammation and demyelination in the central nervous system. Levels of anti-MOG antibody isotypes did not differ between parental and congenic rats, thus an action on Th1/Th2 differentiation is unlikely. In conclusion, this is the first example of an EAE-regulating locus isolated in a congenic rat strain with retained phenotype. The mechanism by which gene(s) in the region act is still unclear and will require further studies with this congenic rat strain as a tool.  相似文献   

14.
We previously reported a linkage region on chromosome 1p (LOD = 3.41) for genes controlling age at onset (AAO) in Parkinson disease (PD). This region overlaps with the previously reported PARK10 locus. To identify the gene(s) associated with AAO and risk of PD in this region, we first applied a genomic convergence approach that combined gene expression and linkage data. No significant results were found. Second, we performed association mapping across a 19.2-Mb region centered under the AAO linkage peak. An iterative association mapping approach was done by initially genotyping single-nucleotide polymorphisms at an average distance of 100 kb apart and then by increasing the density of markers as needed. Using the overall data set of 267 multiplex families, we identified six associated genes in the region, but further screening of a subset of 83 families linked to the chromosome 1 locus identified only two genes significantly associated with AAO in PD: the gamma subunit of the translation initiation factor EIF2B gene (EIF2B3), which was more significant in the linked subset and the ubiquitin-specific protease 24 gene (USP24). Unexpectedly, the human immunodeficiency virus enhancer-binding protein 3 gene (HIVEP3) was found to be associated with risk for susceptibility to PD. We used several criteria to define significant results in the presence of multiple testing, including criteria derived from a novel cluster approach. The known or putative functions of these genes fit well with the current suspected pathogenic mechanisms of PD and thus show great potential as candidates for the PARK10 locus.  相似文献   

15.
The pathogenicity of multiple sclerosis is still poorly understood, but identification of susceptibility genes using the animal model experimental allergic encephalomyelitis (EAE) could provide leads. Certain genes may be shared between different autoimmune diseases, and identification of such genes is of obvious importance. To locate gene regions involved in the control of EAE and to compare the findings with the susceptibility loci recently identified in a model for rheumatoid arthritis (pristane-induced arthritis), we made crosses between the encephalomyelitis- and arthritis-susceptible rat strain DA and the resistant E3 strain. Genetic analysis of animals produced in a F2 intercross identified 11 loci associated with specific EAE-associated traits. Interestingly, five of these loci were situated at the same position as major loci controlling pristane-induced arthritis and showed similarities in inheritance pattern and subphenotype associations. Our results show that different phases of EAE are controlled by different sets of genes and that common genes are likely to be involved in different autoimmune diseases.  相似文献   

16.
Microtia is a congenital deformity where the external ear is underdeveloped. Genetic investigations have identified many susceptibility genes of microtia-related syndromes. However, no causal genes were reported for isolated microtia, the main form of microtia. We conducted a genome-wide linkage analysis on a 5-generation Chinese pedigree with isolated bilateral microtia. We identified a suggestive linkage locus on 4p15.32–4p16.2 with parametric LOD score of 2.70 and nonparametric linkage score (Zmean) of 12.28 (simulated occurrence per genome scan equal to 0.46 and 0.47, respectively). Haplotype reconstruction analysis of the 4p15.32–4p16.2 region further confined the linkage signal to a 10-Mb segment located between rs12505562 and rs12649803 (9.65–30.24 cM; 5.54–15.58 Mb). Various human organ developmental genes reside in this 10-Mb susceptibility region, such as EVC, EVC2, SLC2A9, NKX3-2, and HMX1. The coding regions of three genes, EVC known for cartilage development and NKX3-2, HMX1 involved in microtia, were selected for sequencing with 5 individuals from the pedigree. Of the 38 identified sequence variants, none segregates along with the disease phenotype. Other genes or DNA sequences of the 10-Mb region warrant for further investigation. In conclusion, we report a susceptibility locus of isolated microtia, and this finding will encourage future studies on the genetic basis of ear deformity.  相似文献   

17.
Genetic factors are believed to contribute to multiple sclerosis (MS) susceptibility; however, strong evidence implicating intrinsic and environmental factors in the etiopathogenesis of MS also exists. Susceptibility to experimental allergic encephalomyelitis (EAE), the principal animal model of MS, is also influenced by nongenetic factors, including age and season at immunization. This suggests that age- and season-by-gene interactions exist and that different susceptibility loci may influence disease as a function of the two parameters. In this study, linkage analysis based on genome exclusion mapping was carried out using age and season at immunization restricted cohorts of (B10.S x SJL/J) F2 intercross mice in an effort to identify such linkages. Significant linkage of EAE to eae4 and eae5 was detected with 6- to 12-week-old and summer cohorts. In contrast, significant linkage of EAE to eae4 and eae5 was not detected with the >12-week-old and winter/spring populations. Rather, significant linkage to D4Mit203 at 128.50 Mb on chromosome 4 was detected with animals that were >12 weeks old at the time of immunization or were immunized in the winter. This previously unidentified locus has been designated eae36. These results support the existence of age- and season-by-gene-specific interactions in the genetic control of susceptibility to autoimmune inflammatory disease of the central nervous system and suggest that late-onset MS may be immunogenetically distinct.  相似文献   

18.
Linkage analysis and congenic mapping in NOD mice have identified a susceptibility locus for type 1 diabetes, Idd5.1 on mouse chromosome 1, which includes the Ctla4 and Icos genes. Besides type 1 diabetes, numerous autoimmune diseases have been mapped to a syntenic region on human chromosome 2q33. In this study we determined how the costimulatory molecules encoded by these genes contribute to the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). When we compared levels of expression of costimulatory molecules on T cells, we found higher ICOS and lower full-length CTLA-4 expression on activated NOD T cells compared with C57BL/6 (B6) and C57BL/10 (B10) T cells. Using NOD.B10 Idd5 congenic strains, we determined that a 2.1-Mb region controls the observed expression differences of ICOS. Although Idd5.1 congenic mice are resistant to diabetes, we found them more susceptible to myelin oligodendrocyte glycoprotein 35-55-induced EAE compared with NOD mice. Our data demonstrate that higher ICOS expression correlates with more IL-10 production by NOD-derived T cells, and this may be responsible for the less severe EAE in NOD mice compared with Idd5.1 congenic mice. Paradoxically, alleles at the Idd5.1 locus have opposite effects on two autoimmune diseases, diabetes and EAE. This may reflect differential roles for costimulatory pathways in inducing autoimmune responses depending upon the origin (tissue) of the target Ag.  相似文献   

19.
20.
Pertussis toxin (PTX) is a potent ancillary adjuvant used to elicit several different autoimmune diseases, including experimental allergic encephalomyelitis (EAE). To delineate the genetics of PTX effect in EAE, we mapped EAE-modifying (eae-m) loci in cohorts of backcross mice immunized with and without PTX. In this study, we analyzed the genetic basis of EAE susceptibility and severity and the intermediate phenotypes of mononuclear cell infiltration, suppuration, and demyelination. In animals immunized with PTX, one major locus, eae9, controls disease susceptibility and severity. Eae9 also regulates the extent of mononuclear cell infiltration of the spinal cord in male mice. Without PTX, five eae-m loci were noted, including three new loci in intervals on chromosomes 8 (eae14), 10 (eae17), and 18 (eae18). Taken together, these results suggest that eae9 controls the effects of PTX in EAE susceptibility, and is capable of overriding the other genetic checkpoints in the pathogenesis of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号