首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of organic and inorganic solutes into and out of cells requires specialized transport proteins. Given a sufficiently sensitive analytical method for measuring cellular solute concentrations, it should be possible to monitor solute transport across the plasma membrane at the level of single cells. We report a capillary zone electrophoresis approach that is generally applicable to monitor solute transport into Xenopus laevis oocytes, requires only nanoliters of sample, and involves no radioactive materials. The sensitivity of capillary electrophoresis with UV detection is typically on the order of 10(-5)-10(-6) M, resulting in the mass detection limits in the low femtomole range. We show that capillary zone electrophoresis serves as a simple technique to measure solute transport into oocytes. Studies of the mammalian oligopeptide transporter PepT1 and the Na(+)- and K(+)-coupled epithelial and neuronal glutamate transporter EAAC1 expressed in oocytes demonstrate that transport of the dipeptide Trp-Gly via PepT1 and transport of Na+ and K+ via EAAC1 across the oocyte plasma membrane can be monitored by measuring intracellular tryptophan absorption and by indirect UV detection of inorganic ions, respectively. The CZE method allowed the simultaneous detection of changes of intracellular Na+ and K+ concentrations in response to EAAC1-mediated Na+ cotransport and K+ countertransport. This is the first report of a capillary zone electrophoresis-based quantitative analysis of intracellular components of a single cell in response to transport activity.  相似文献   

2.
It has been described recently that low concentrations of benzodiazepines stimulate the transport activity of the neuronal glutamate transporter EAAT3, whereas high concentrations inhibit it. The present study is aimed to investigate whether benzodiazepines have similar effects on the two glial glutamate transporter, EAAT1 and EAAT2. To this end, the transporters were transiently expressed in CHO cells and transport activity was determined by isotope fluxes using D-aspartate as non-metabolizable homologue of L-glutamate. At low D-aspartate concentrations (1 micromol/l) EAAT1-mediated uptake was reduced significantly by low concentrations of oxazepam (1 micromol/l) and diazepam (1 and 10 micromol/l). At 100 micromol/l D-aspartate oxazepam stimulated EAAT1-mediated uptake up to 150% in a dose dependent manner, whereas the inhibition by low concentrations of diazepam was attenuated. In contrast, a significant effect of diazepam on EAAT2-mediated uptake was only observed at 1000 micromol/l where uptake was inhibited by 60%. A similar inhibition was observed for EAAT1. These studies demonstrate a different modulation of EAAT1 and EAAT2 by benzodiazepines. Furthermore the glial transporters differ from the neuronal glutamate transporter. Thus, a complex in vivo response of the various transporters to benzodiazepines can be expected.  相似文献   

3.
A co-ordinated regulation between neurons and astrocytes is essential for the control of extracellular glutamate concentration. Here, we have investigated the influence of astrocytes and glia-derived cholesterol on the regulation of glutamate transport in primary neuronal cultures from rat embryonic cortices. Glutamate uptake rate and expression of the neuronal glutamate transporter EAAC1 were low when neurons were grown without astrocytes and neurons were unable to clear extracellular glutamate. Treatment of the neuronal cultures with glial conditioned medium (GCM) increased glutamate uptake Vmax, EAAC1 expression and restored the capacity of neurons to eliminate extracellular glutamate. Thus, astrocytes up-regulate the activity and expression of EAAC1 in neurons. We further showed that cholesterol, present in GCM, increased glutamate uptake activity when added directly to neurons and had no effect on glutamate transporter expression. Furthermore, part of the GCM-induced effect on glutamate transport activity was lost when cholesterol was removed from GCM (low cholesterol-GCM) and was restored when cholesterol was added to low cholesterol-GCM. This demonstrates that glia-derived cholesterol regulates glutamate transport activity. With these experiments, we provide new evidences for neuronal glutamate transport regulation by astrocytes and identified cholesterol as one of the factors implicated in this regulation.  相似文献   

4.
HgCl(2) had both stimulatory and inhibitory effects on [(3)H]2-deoxyglucose (DG) uptake in Xenopus laevis oocytes. The Hg dose response was complex, with 0.1-10 microM Hg increasing total DG uptake, 30-50 microM Hg inhibiting, and concentrations >100 microM increasing uptake. Analyses of the effects of Hg on DG transport kinetics and cell membrane permeability indicated that low concentrations of Hg stimulated mediated uptake, intermediate concentrations inhibited mediated uptake, but high Hg concentrations increased non-mediated uptake. 10 microM Hg increased the apparent V(max) for DG uptake, but caused little or no change in apparent K(m). Phenylarsine oxide prevented the increase in DG uptake by 10 microM Hg, suggesting that the increase was due to transporter recruitment. Microinjecting low doses of HgCl(2) into the cell increased mediated DG uptake. Higher intracellular doses of Hg increased both mediated and non-mediated DG uptake. Both insulin and Hg cause cell swelling in isotonic media and, for insulin, this swelling has been linked to the mechanism of hormone action. Osmotically swelling Xenopus oocytes stimulated DG transport 2-5-fold and this increase was due to an increased apparent V(max). Exposing cells to 10 microM Hg or 140 nM insulin both increased cellular water content by 18% and increased hexose transport 2-4-fold. These data indicate that low concentrations of Hg and insulin affect hexose transport in a similar manner and that for both an increase cellular water content could be an early event in signaling the increase in hexose transport.  相似文献   

5.
Proline absorption across small intestine takes place mainly through a Na+-dependent cotransporter localized at the brush border membrane of the enterocyte named IMINO system. It transports L-proline and 4-OH-proline but not L-alanine, neither cationic nor anionic amino acids. The present work demonstrates the functional expression of this transporter in Xenopus laevis oocytes by mRNA microinjection and radiotracer uptake techniques. Poly (A)+-RNA was isolated from rabbit jejunal mucosa and injected into oocytes. Five days after the injection, results showed 1.5 fold stimulation of 50 microM 3H-proline uptake by the injected oocytes when compared to the non injected oocytes uptake. Poly (A)+-RNA was sized fractionated and fractions were injected again. Increase on Na+-dependent L-proline uptake was obtained with a mRNA fraction between 2,4 and 4,4 kb, which was used to construct a cDNA library. The library was sequentially divided and cRNAs injected into oocytes in order to screen for an increment on the signal. A subdivision containing around 2,000 colonies was found to augment L-proline uptake 25 fold over the non injected oocytes uptake. This cRNA pool was used to further characterize the transporter. Results showed that in the absence of Na+ there was no L-proline uptake, 2 mM 4-OH-L-proline completely inhibited 50 microM proline uptake and there was no 50 microM alanine uptake. In summary, these results demonstrate the expression of the rabbit small intestine IMINO transporter in Xenopus laevis oocytes and support the next steps in the isolation of the clone.  相似文献   

6.
The human dopamine transporter was expressed in Xenopus laevis oocytes following injection of mRNA isolated from human brain substantia nigra. The specific accumulation of [3H]dopamine into these oocytes was time and Na+ dependent. Furthermore, [3H]dopamine accumulation was prevented by coincubation of oocytes with dopamine (100 microM) or with the dopamine uptake inhibitors GBR 12909 (1 microM) or cocaine (3 microM). In contrast, oocyte injection of mRNA isolated from human globus pallidus, an area devoid of dopamine neuron perikarya, did not elicit expression of the dopamine transporter. Oocyte expression of the human dopamine transporter can be used for the further characterization and cloning of this low-abundance membrane protein.  相似文献   

7.
In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.  相似文献   

8.
9.
The excitatory amino acids glutamate and cysteine are actively transported into neurons from the extracellular space by the high affinity glutamate transporter EAAC1. The astrocyte glutamate transporters, GLT1 and GLAST, are the primary mediators of glutamate clearance. EAAC1 has a limited role in this function. However, uptake of cysteine into neurons via EAAC1 contributes to neuronal antioxidant function by providing cysteine substrate for glutathione synthesis. Mice in which the EAAC1 gene has been deleted were seen to have enhanced susceptibility to neuronal oxidative stress and developed brain atrophy and cognitive function decline with aging. The aim of the current study was to evaluate if EAAC1 confers protection against ischemic events. Young adult CD-1 wild-type or EAAC1(-/-) mice were subjected to 30 min of bilateral common carotid artery occlusion and evaluated for neuronal death and zinc translocation. The intensity of TSQ fluorescence in the cytoplasm of cortical neurons in the EAAC1(-/-) mice was significantly higher than wild-type mice, indicating that the cortical neurons of EAAC1(-/-) mice contain higher cytoplasmic concentrations of labile (or free) zinc. Zinc translocation into cortical neurons was also enhanced in EAAC1(-/-) mice. Three days after ischemia, Fluoro-Jade B staining revealed that EAAC1(-/-) mice had more than twice as many degenerating neurons as wild-type mice. N-acetylcysteine, a membrane-permeant cysteine pro-drug, normalized basal zinc levels, reduced TSQ (+) neurons and reduced ischemic neuronal death in the EAAC1(-/-) mice when delivered in a pre-treatment fashion. Taken together, this study implicates EAAC1-dependent cysteine uptake as an endogenous source of enhancing antioxidant function and zinc homeostasis in neurons in the ischemic brain.  相似文献   

10.
The electrogenic cation transporters OCT1 and OCT2 in the basolateral membrane of renal proximal tubules mediate the first step during secretion of organic cations. Previously we demonstrated stimulation and change of selectivity for rat OCT1 (rOCT1) by protein kinase C. Here we investigated the effect of cGMP on cation transport by rOCT1 or human OCT2 (hOCT2) after expression in human embryonic kidney cells (HEK293) or oocytes of Xenopus laevis. In HEK293 cells, uptake was measured by microfluorimetry using the fluorescent cation 4-(4-(dimethyl-amino)styryl)-N-methylpyridinium iodide (ASP + ) as substrate, whereas uptake into Xenopus laevis oocytes was measured with radioactively labelled cations. In addition, ASP +-induced depolarizations of membrane voltages (Vm) were measured in HEK293 cells using the slow whole-cell patch-clamp method. Incubation of rOCT1-expressing HEK293 cells for 10 min with 100 mM 8-Br-cGMP reduced initial ASP + uptake by maximally 78% with an IC50 value of 24 +/- 16 mM. This effect was not abolished by the specific PKG inhibitor KT5823, indicating that a cGMP-dependent kinase is not involved. An inhibition of ASP + uptake by rOCT1 in HEK293 cells was also obtained when the cells were incubated for 10 min with 100 mM cGMP, whereas no effect was obtained when cGMP was given together with ASP +. ASP + (100 mM)-induced depolarizations of Vm were reduced in the presence of 8-Br-cGMP (100 mM) by 44 +/- 11% (n = 6). Since it could be demonstrated that [3H]cGMP is taken up by an endogeneous cyanine863-inhibitable transporter, the effect of cGMP is probably mediated from inside the cell. Uptake measurements with [14C]tetraethylammonium and [3H]2-methyl-4-phenylpyridinium in Xenopus laevis oocytes expressing rOCT1 performed in the absence and presence of 8-Br-cGMP showed that cGMP does not interact directly with the transporter. The data suggest that the inhibition mediated by cGMP observed in HEK293 cells occurs most likely via a mammalian cGMP-binding protein that interacts with OCT1-2 transporters.  相似文献   

11.
C F Burant  G I Bell 《Biochemistry》1992,31(42):10414-10420
Four facilitative glucose transporters isoforms, GLUT1/erythrocyte, GLUT2/liver, GLUT3/brain, and GLUT4/muscle-fat, as well as chimeric transporter proteins were expressed in Xenopus oocytes, and their properties were studied. The relative Km's of the transporters for 2-deoxyglucose were GLUT3 (Km = 1.8 mM) > GLUT4 (Km = 4.6 mM) > GLUT1 (Km = 6.9 mM) > GLUT2 (Km = 17.1 mM). In a similar fashion, the uptake of 2-deoxyglucose by GLUT1-, GLUT2-, and GLUT3-expressing oocytes was inhibited by a series of unlabeled hexoses and pentoses and by cytochalasin B in a similar hierarchical order. To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution. In oocytes expressing both GLUT2 and GLUT3, the transport activity associated with each transporter isoform could be distinguished kinetically. Similarly, there was no alteration in the kinetic parameters of GLUT3, or the ability of glucose or cytochalasin B to inhibit 2-deoxyglucose uptake, when coexpressed with up to a 3-fold greater amount of functionally inactive mutant of GLUT3. These studies suggest that the family of glucose transporters have similar binding sites which may be in the form of a functional monomeric unit when expressed in Xenopus oocytes.  相似文献   

12.
Glutamate transporters are thought to be assembled as trimers of identical subunits that line a central hole, possibly the permeation pathway for anions. Here, we have tested the effect of multimerization on the transporter function. To do so, we coexpressed EAAC1(WT) with the mutant transporter EAAC1(R446Q), which transports glutamine but not glutamate. Application of 50 microM glutamate or 50 microM glutamine to cells coexpressing similar numbers of both transporters resulted in anion currents of 165 and 130 pA, respectively. Application of both substrates at the same time generated an anion current of 297 pA, demonstrating that the currents catalyzed by the wild-type and mutant transporter subunits are purely additive. This result is unexpected for anion permeation through a central pore but could be explained by anion permeation through independently functioning subunits. To further test the subunit independence, we coexpressed EAAC1(WT) and EAAC1(H295K), a transporter with a 90-fold reduced glutamate affinity as compared to EAAC1(WT), and determined the glutamate concentration dependence of currents of the mixed transporter population. The data were consistent with two independent populations of transporters with apparent glutamate affinities similar to those of EAAC1(H295K) and EAAC1(WT), respectively. Finally, we coexpressed EAAC1(WT) with the pH-independent mutant transporter EAAC1(E373Q), showing two independent populations of transporters, one being pH-dependent and the other being pH-independent. In conclusion, we propose that EAAC1 assembles as trimers of identical subunits but that the individual subunits in the trimer function independently of each other.  相似文献   

13.
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 microM (Oatp1b2), 17 microM (OATP1B1) and 7.5 microM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.  相似文献   

14.
In this report, we demonstrate the expression of the mammalian System A neutral amino acid transporter in Xenopus laevis oocytes following microinjection of mRNA from rat liver, Chinese hamster ovary (CHO) cells, and human placenta. Stage 6 oocytes were injected with poly(A+) mRNA from one of these three sources and incubated for 24 h prior to assaying Na(+)-dependent 2-aminoisobutyric acid transport to monitor the increase in System A activity. The endogenous 2-aminoisobutyric acid uptake rates in oocytes were sufficiently slow so as to provide a low background value that was subtracted to obtain transport rates for the mammalian carrier alone. The degree of expression of the mammalian System A activity in Xenopus oocytes corresponded to the known transport rates in the tissue from which the mRNA was prepared. For example, hepatic mRNA from glucagon-treated rats produced greater System A activity than mRNA from control animals, and the mRNA from the CHO transport mutant cell line alar4-H3.9, which overproduces System A, resulted in higher transport rates than mRNA from the parental cell line (CHO-K1). Fractionation of total mRNA poly(A+) by nondenaturing agarose gel electrophoresis revealed transport activity associated with a 2.0-2.5-kilobase mRNA fraction common to each of the three tissues tested.  相似文献   

15.
The mRNA that encodes a serotonin transporter was expressed using the Xenopus laevis oocyte expression system. Poly(A)+ RNA isolated from mouse brainstem was injected into Xenopus laevis oocytes, and the ability of oocytes to take up serotonin was measured 3 days postinjection. RNA-dependent serotonin uptake was sensitive to citalopram, a specific inhibitor of serotonin uptake, whereas background levels of serotonin uptake were not citalopram sensitive. Two RNA size fractions, 4.0 and 4.5 kb, were most efficient in stimulating uptake. Injection into Xenopus laevis oocytes of the 4.5-kb size fraction of mouse brainstem RNA resulted in threefold more serotonin uptake than did injection of unfractionated poly(A)+ RNA.  相似文献   

16.
Aoyama K  Watabe M  Nakaki T 《Amino acids》2012,42(1):163-169
Glutathione (GSH) plays essential roles in different processes such as antioxidant defenses, cell signaling, cell proliferation, and apoptosis in the central nervous system. GSH is a tripeptide composed of glutamate, cysteine, and glycine. The concentration of cysteine in neurons is much lower than that of glutamate or glycine, so that cysteine is the rate-limiting substrate for neuronal GSH synthesis. Most neuronal cysteine uptake is mediated through the neuronal sodium-dependent glutamate transporter, known as excitatory amino acid carrier 1 (EAAC1). Glutamate transporters are vulnerable to oxidative stress and EAAC1 dysfunction impairs neuronal GSH synthesis by reducing cysteine uptake. This may start a vicious circle leading to neurodegeneration. Intracellular signaling molecules functionally regulate EAAC1. Glutamate transporter-associated protein 3-18 (GTRAP3-18) activation down-regulates EAAC1 function. Here, we focused on the interaction between EAAC1 and GTRAP3-18 at the plasma membrane to investigate their effects on neuronal GSH synthesis. Increased level of GTRAP3-18 protein induced a decrease in GSH level and, thereby, increased the vulnerability to oxidative stress, while decreased level of GTRAP3-18 protein induced an increase in GSH level in vitro. We also confirmed these results in vivo. Our studies demonstrate that GTRAP3-18 regulates neuronal GSH level by controlling the EAAC1-mediated uptake of cysteine.  相似文献   

17.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

18.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system.  相似文献   

19.
Najimi M  Maloteaux JM  Hermans E 《FEBS letters》2002,523(1-3):224-228
The possible modulation of the glutamate transporter EAAC1 by a class A G protein-coupled receptor was studied in transfected C6 glioma cells stably expressing the high-affinity neurotensin receptor NTS1. Brief exposure (5 min) to neurotensin increased Na(+)-dependent D-[(3)H]aspartate uptake by about 70%. The effect of neurotensin was found to result from an increase in cell surface expression of EAAC1 and accordingly, cytochalasin D and colchicine were shown to block the effect of neurotensin on aspartate uptake, suggesting that the cytoskeleton participates in this regulation. Neither protein kinase C nor phosphatidylinositol 3-kinase activities, two intracellular signaling pathways known to modulate EAAC1, was required for EAAC1-mediated aspartate transport regulation by neurotensin. Together, these results provide evidence for an acute regulation of EAAC1 trafficking after activation of a G protein-coupled receptor.  相似文献   

20.
1. The kinetic characteristics of pyruvate kinase isozymes from oocytes, embryos, liver and skeletal muscle from the clawed frog Xenopus laevis were measured in cell extracts. 2. The muscle and liver isozymes display Michaelis-Menten kinetics with Kms for phosphoenolpyruvate (PEP) of 0.02 and 0.05 mM, respectively. 3. Pyruvate kinase from oocytes and embryos displays cooperative kinetics for PEP with a Km of about 0.15 mM; the kinetics become hyperbolic and the Km for PEP is reduced to 0.05 mM in the presence of microM concentrations of fructose-1,6-bisphosphate. 4. These data serve to characterize pyruvate kinase activity in oocytes and embryos and the kinetics are compared to mammalian pyruvate kinase isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号