首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theiler's murine encephalomyelitis viruses (TMEV) are picornaviruses that produce enteric and neurological diseases in mice. Subgroup TO strains of TMEV cause persistent infections with demyelination, while subgroup GDVII strains neither persist nor demyelinate. We produced neutralizing monoclonal antibodies (mAbs) to clarify the mechanisms of persistence and demyelination. Some of the neutralizing mAbs reacted with isolated VP1 on Western blots, while others were conformation specific. The neutralization site for the former TMEV mAbs was on the VP1 trypsin cleavage site of the intact virion. The neutralization site for the conformation-specific mAbs was distinct and was not affected by trypsin. Trypsin treatment of subgroup TO strains increased their infectivity for L cells, whereas the infectivity of subgroup GDVII strains was decreased by trypsin treatment. Subpopulations of virus in subgroup TO-infected tissue culture cells and in infected mouse brain homogenates contained VP1-cleaved virus; this VP1-cleaved virus gave rise to a large persistent fraction in neutralization tests when it was reacted with VP1-specific mAbs. These findings have implications regarding the pathogenesis of subgroup TO demyelinating disease. TMEV VP1 cleavage may be important for virus persistence because of disruption of a major neutralization epitope. The change in virus surface structure caused by VP1 cleavage may affect cell binding and lead to altered cytotropism. Immunocytes, which have been implicated in subgroup TO demyelination, may provide a source for proteases for VP1 cleavage.  相似文献   

2.
Polyprotein processing of Theiler''s murine encephalomyelitis virus.   总被引:2,自引:10,他引:2       下载免费PDF全文
R P Roos  W P Kong    B L Semler 《Journal of virology》1989,63(12):5344-5353
  相似文献   

3.
The proteins specified by four Theiler's murine encephalomyelitis virus isolates in infected BHK-21 cells were studied. Their processing, sensitivity to trypsin, and the changeover after viral infection from synthesis of cellular proteins to synthesis of viral proteins were determined by one- and two-dimensional gel electrophoreses. The molecular weights and isoelectric points of the structural and nonstructural proteins of DA and WW isolates, which represent the less virulent subgroup of Theiler's murine encephalomyelitis virus, and of GDVII and FA isolates, which represent the virulent subgroup, were found to be the same. The sensitivity of DA and GDVII isolates to trypsin, as purified virions, and in infected cell extracts was similar. The shut-off of cellular protein synthesis in cells infected with the same two isolates and the changeover to the synthesis of viral proteins appeared to have the same pattern. These findings are interesting since the two subgroups of Theiler's murine encephalomyelitis virus differ in their pathogenicity, intracellular development in infected BHK-21 cells, and RNA composition, as determined by RNase T1 fingerprinting analysis.  相似文献   

4.
5.
6.
Theiler's murine encephalomyelitis viruses (TMEV) are serologically related picornaviruses which cause both enteric and neurological disease in mice. The biological activities of TMEV vary between the two different TMEV subgroups (TO and GDVII) and with different passage histories of the same TMEV strain (e.g., mouse brain-passed versus tissue culture-passed DA strain of the TO subgroup). We raised neutralizing monoclonal antibodies (mAbs) against tissue culture-passed DA and GDVII strains of TMEV. We produced two mAbs against the DA strain which neutralized all members of the TO subgroup, but not the GDVII subgroup strains (GDVII and FA); these two DA mAbs reacted similarly with both mouse brain-passed DA and tissue culture-passed DA. Of six neutralizing GDVII mAbs, four reacted only to GDVII and FA, whereas two neutralized TO strains as well. These mAbs demonstrate the presence of TMEV group-specific as well as subgroup-specific neutralization and substantiate the division of TMEV into two distinct subgroups. On Western immunoblots one of the two DA mAbs reacted against isolated DA VP1, two GDVII mAbs (which were TMEV group specific) reacted against isolated GDVII VP1 and DA VP1, and the other DA mAb and four other GDVII mAbs required an intact virion conformation for reactivity. An analysis of the epitopes recognized by these mAbs may elucidate sites important in TMEV biological activities.  相似文献   

7.
Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Fourteen clonally isolated mutants demonstrated substantial resistance to multiple monoclonal antibodies, including K3-4C8-K3-2F2 and B5-B3. In addition, 13 mutants demonstrated a 10-fold or greater reduction in neutraliztion mediated by polyclonal human antibody. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.  相似文献   

8.
9.
10.
11.
12.
We compared infection of a murine macrophage-like cell line, J774-1, with two Theiler's murine encephalomyelitis virus subgroup strains. The GDVII strain, which is highly virulent and produces acute polioencephalomyelitis in mice, did not actively replicate in J774-1 cells, although there was a significant inhibition in cellular protein synthesis. In contrast, the DA strain, which is less virulent and causes demyelination with a persistent virus infection, productively infected J774-1 cells; however, there was less virus produced than in BHK-21 cells, and there was little if any cellular protein shutoff. These in vitro data may provide some explanation for the biological activities that are observed between both subgroup strains.  相似文献   

13.
IgG1b12, a human monoclonal antibody (MAb) to an epitope overlapping the CD4-binding site on gp120, has broad and potent neutralizing activity against most primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess whether and how escape mutants resistant to IgG1b12 can be generated, we cultured primary HIV-1 strain JRCSF in its presence. An escape mutant emerged which was approximately 100-fold more resistant to neutralization by IgG1b12. Both virion-associated and solubilized gp120 from this variant had a reduced affinity for IgG1b12, and sequencing of its env gene showed that amino acid substitutions had occurred at three positions within gp120. Two (D164N and D182N) were located in V2, and one (P365L) was in C3. By site-directed mutagenesis, we demonstrated that the D182N and P365L mutations, but not D164N, contribute to the IgG1b12-resistant phenotype. However, the former two substitutions, individually or in combination, hinder the replication of the neutralization-resistant virus. Introduction of the D164N substitution into the P365L variant results in a nonviable virus (D164N/P365L). In contrast, addition of D164N to the D182N or D182N/P365L mutant partially restored replicative function to near wild-type levels. Furthermore, we found that all of the IgG1b12-resistant mutant viruses remained sensitive to other human MAbs, such as 2G12 and 2F5, and to the CD4-IgG molecule, except that the P365L-containing mutant was slightly resistant to CD4-IgG. These results suggest that escape from IgG1b12 neutralization is due to a local rather than a global modification of the gp120 structure. Our findings have implications for the therapeutic and prophylactic applications of antibodies for HIV-1 infection.  相似文献   

14.
CTL escape mutations have been identified in several chronic infections, including mice infected with mouse hepatitis virus strain JHM. One outstanding question in understanding CTL escape is whether a CD8 T cell response to two or more immunodominant CTL epitopes would prevent CTL escape. Although CTL escape at multiple epitopes seems intuitively unlikely, CTL escape at multiple CD8 T cell epitopes has been documented in some chronically infected individual animals. To resolve this apparent contradiction, we engineered a recombinant variant of JHM that expressed the well-characterized gp33 epitope of lymphocytic choriomeningitis virus, an epitope with high functional avidity. The results show that the presence of a host response to this second epitope protected mice against CTL escape at the immunodominant JHM-specific CD8 T cell epitope, the persistence of infectious virus, and the development of clinical disease.  相似文献   

15.
Little or no antiviral immune response is mounted in athymic nude mice infected with the Daniels strain of Theiler's murine encephalomyelitis virus. In these athymic mice, increasing levels of infectious virus could be detected in the central nervous system. Seventy-five percent (9 of 12) of the nude mice were moribund or dead by 4 weeks postinfection. In contrast, treatment of Theiler's virus-infected nude mice with a neutralizing monoclonal antibody (H7-2) against the viral protein VP-1 resulted in a dramatic reduction of infectious virus within the central nervous system. All antibody-treated nude animals survived beyond 4 weeks postinfection. Monoclonal antibody titers could be maintained by passive transfer in treated nude mice at levels comparable to those of polyclonal antibody titers found in heterozygous infected nu/+ littermates. Areas of demyelination were detected in the untreated animals as early as 7 days after infection with little or no remyelination present. In approximately one-half of the antibody-treated nude animals, no demyelinating lesions were found. However, the rest of these treated mice were found to have areas of both demyelination and remyelination. Thus, anti-Theiler's murine encephalomyelitis virus antibody against VP-1 can play a dramatic role in the survival of mice, clearance of virus, limiting viral spread, and altering the pattern of disease in the absence of a functional T-cell response.  相似文献   

16.
Theiler's murine encephalitis viruses (TMEV) are divided into two subgroups based on their neurovirulence. Persistent strains resemble Theiler's original viruses (referred to as the TO subgroup), which largely induce a subclinical polioencephalomyelitis during the acute phase of the disease and can persist in the spinal cord of susceptible animals, inducing a chronic demyelinating disease. In contrast, members of the neurovirulent subgroup cause an acute encephalitis characterized by the rapid onset of paralysis and death within days following intracranial inoculation. We report herein the characterization of a novel neurovirulent strain of TMEV, identified using pyrosequencing technology and referred to as NIHE. Complete coverage of the NIHE viral genome was obtained, and it shares <90% nucleotide sequence identity to known TMEV strains irrespective of subgroup, with the greatest sequence variability being observed in genes encoding the leader and capsid proteins. The histopathological analysis of infected brain and spinal cord demonstrate inflammatory lesions and neuronal necrosis during acute infection with no evidence of viral persistence or chronic disease. Intriguingly, genetic analysis indicates the putative expression of the L protein, considered a hallmark of strains within the persistent subgroup. Thus, the identification and characterization of a novel neurovirulent TMEV strain sharing features previously associated with both subgroups will lead to a deeper understanding of the evolution of TMEV strains and new insights into the determinants of neurovirulence.  相似文献   

17.
Neutralization escape mutants of simian rotaviruses (rhesus rotavirus and SA11) were tested in hemagglutination inhibition and neutralization assays against hyperimmune and infection sera to determine if mutation in an immunodominant epitope could enable neutralization escape. An SA11 mutant with a new glycosylation site at amino acid 211 of VP7 was shown to escape neutralization by hyperimmune but not infection sera.  相似文献   

18.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

19.
20.
Infection with virus variants exhibiting changes in the peptide sequences defining immunodominant determinants that abolish recognition by antiviral cytotoxic T cells (CTL) presents a considerable challenge to the antiviral T-cell immune system and may enable some viruses to persist in hosts. The potential importance of such variants with respect to mechanisms of viral persistence and disease pathogenesis was assessed by infecting adult mice with variants of lymphocytic choriomeningitis virus (LCMV) strain WE. These variants were selected in vivo or in vitro for resistance to lysis by CD8+ H-2b-restricted antiviral CTL. The majority of anti-LCMV CTL in infected H-2b mice recognize epitopes defined by residues 32 to 42 and 275 to 289 (epitopes 32-42 and 275-289) of the LCMV glycoprotein or 397 to 407 of the viral nucleoprotein. The 8.7 variant exhibits a change in the epitope 32-42 (Val-35-->Leu), and variant CL1.2 exhibits a change in the epitope 275-289 (Asn-280-->Asp) of the wild-type LCMV-WE. The double-mutated 8.7-B23 variant had the variation of 8.7 and an additional change located in the epitope 275-289 (Asn-280-->Ser). The 8.7 variant peptide with unchanged anchor positions bound efficiently to H-2Db and H-2Kb molecules but induced only a very weak CTL response. CTL epitope 275-289 of CL1.2 and 8.7-B23 altered at predicted anchor residues were unable to bind Db molecules and were also not recognized by antiviral CTL. Infection of C57BL/6 mice (H-2b) with the variants exhibiting mutations of one of the CTL epitopes, i.e., 8.7 or CL1.2, induced CTL responses specific for the unmutated epitopes comparable with those induced by infection with WE, and these responses were sufficient to eliminate virus from the host. In contrast, infection with the double-mutated variant 8.7-B23 induced CTL activity that was reduced by a factor of about 50-fold compared with wild-type LCMV. Consequently, high doses (10(7) PFU intravenously) of this virus were eliminated slowly and only by about day 100 after infection. 8.7-B23 failed to cause lethal lymphocytic choriomeningitis after intracerebral infection with a dose of > 10(4) PFU in C57BL/6 mice (but not in mice of nonselecting H-2d haplotype); with the other variants or wild-type LCMV, doses greater than 10(6) to 10(7) PFU were necessary to avoid lethal choriomeningitis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号