首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theiler's murine encephalomyelitis viruses (TMEV) are picornaviruses that produce enteric and neurological diseases in mice. Subgroup TO strains of TMEV cause persistent infections with demyelination, while subgroup GDVII strains neither persist nor demyelinate. We produced neutralizing monoclonal antibodies (mAbs) to clarify the mechanisms of persistence and demyelination. Some of the neutralizing mAbs reacted with isolated VP1 on Western blots, while others were conformation specific. The neutralization site for the former TMEV mAbs was on the VP1 trypsin cleavage site of the intact virion. The neutralization site for the conformation-specific mAbs was distinct and was not affected by trypsin. Trypsin treatment of subgroup TO strains increased their infectivity for L cells, whereas the infectivity of subgroup GDVII strains was decreased by trypsin treatment. Subpopulations of virus in subgroup TO-infected tissue culture cells and in infected mouse brain homogenates contained VP1-cleaved virus; this VP1-cleaved virus gave rise to a large persistent fraction in neutralization tests when it was reacted with VP1-specific mAbs. These findings have implications regarding the pathogenesis of subgroup TO demyelinating disease. TMEV VP1 cleavage may be important for virus persistence because of disruption of a major neutralization epitope. The change in virus surface structure caused by VP1 cleavage may affect cell binding and lead to altered cytotropism. Immunocytes, which have been implicated in subgroup TO demyelination, may provide a source for proteases for VP1 cleavage.  相似文献   

2.
Polyprotein processing of Theiler''s murine encephalomyelitis virus.   总被引:2,自引:10,他引:2       下载免费PDF全文
R P Roos  W P Kong    B L Semler 《Journal of virology》1989,63(12):5344-5353
  相似文献   

3.
We generated Theiler's murine encephalomyelitis virus mutants resistant to several neutralizing monoclonal antibodies (MAbs) having their epitopes near a trypsin cleavage site of VP1. Neutralization and Western blot (immunoblot) studies suggest that two of the MAbs have identical epitopes that partly overlap the epitope of a third MAb. Sequencing of RNA of the mutants localized the epitopes to a site near the carboxyl end of VP1. The limited diversity of nucleotide changes seen in the mutants and the immunodominance of the site suggest that the carboxyl end of VP1 may have an important function.  相似文献   

4.
Polyprotein processing studies of Theiler's murine encephalomyelitis virus (TMEV), a group of mouse picornaviruses, demonstrated synthesis of a protein we have called l during in vitro translations from the RNA of DA, a demyelinating strain of TMEV, but not GDVII, an acute neurovirulent strain. We have proposed that l is synthesized from an alternative initiation site in the DA leader (L) coding area out of phase with the polyprotein reading frame (R. P. Roos, W.-P. Kong, B. L. Semler, J. Virol. 63:5344-5353, 1989). We now provide support for this proposal from experiments involving in vitro translation of three separate mutations of an infectious DA cDNA clone: DA"l"-1, which contains a base mismatch at the putative initiation codon of l, DAL-1, which contains a base mismatch at the presumed authentic initiation site of L at the beginning of the polyprotein; and DAL:NheI, which contains nucleotides coding for a four-amino-acid insertion in the L coding area with a termination codon in the l reading frame. Our results demonstrate that the DA strain uses an alternative initiation site and reading frame to in vitro synthesize l. l may have a role in the biological activity of the virus.  相似文献   

5.
The proteins specified by four Theiler's murine encephalomyelitis virus isolates in infected BHK-21 cells were studied. Their processing, sensitivity to trypsin, and the changeover after viral infection from synthesis of cellular proteins to synthesis of viral proteins were determined by one- and two-dimensional gel electrophoreses. The molecular weights and isoelectric points of the structural and nonstructural proteins of DA and WW isolates, which represent the less virulent subgroup of Theiler's murine encephalomyelitis virus, and of GDVII and FA isolates, which represent the virulent subgroup, were found to be the same. The sensitivity of DA and GDVII isolates to trypsin, as purified virions, and in infected cell extracts was similar. The shut-off of cellular protein synthesis in cells infected with the same two isolates and the changeover to the synthesis of viral proteins appeared to have the same pattern. These findings are interesting since the two subgroups of Theiler's murine encephalomyelitis virus differ in their pathogenicity, intracellular development in infected BHK-21 cells, and RNA composition, as determined by RNase T1 fingerprinting analysis.  相似文献   

6.
7.
8.
N Rubio  A Cuesta 《Journal of virology》1988,62(11):4303-4306
An immunological assay was developed to characterize the binding of Theiler's murine encephalomyelitis virus to BHK-21 cell receptors. After absorption of the virus and formaldehyde fixation, rabbit antibodies and Staphylococcus aureus protein A labeled with 125I formed a specific complex on the surfaces of the cells. The optimal multiplicity of infection in this system was 10 PFU per cell. The virus was internalized at 33 and 37 degrees C, but internalization did not take place at 25 or 4 degrees C. The binding was proportional to the number of cells and was significant within 30 s. Cell surface receptors were still active after fixation, and only intact viruses were bound, as demonstrated by the lack of binding of the purified, isolated virion proteins VP1, VP2, and VP3.  相似文献   

9.
Theiler's murine encephalomyelitis viruses (TMEV) are serologically related picornaviruses which cause both enteric and neurological disease in mice. The biological activities of TMEV vary between the two different TMEV subgroups (TO and GDVII) and with different passage histories of the same TMEV strain (e.g., mouse brain-passed versus tissue culture-passed DA strain of the TO subgroup). We raised neutralizing monoclonal antibodies (mAbs) against tissue culture-passed DA and GDVII strains of TMEV. We produced two mAbs against the DA strain which neutralized all members of the TO subgroup, but not the GDVII subgroup strains (GDVII and FA); these two DA mAbs reacted similarly with both mouse brain-passed DA and tissue culture-passed DA. Of six neutralizing GDVII mAbs, four reacted only to GDVII and FA, whereas two neutralized TO strains as well. These mAbs demonstrate the presence of TMEV group-specific as well as subgroup-specific neutralization and substantiate the division of TMEV into two distinct subgroups. On Western immunoblots one of the two DA mAbs reacted against isolated DA VP1, two GDVII mAbs (which were TMEV group specific) reacted against isolated GDVII VP1 and DA VP1, and the other DA mAb and four other GDVII mAbs required an intact virion conformation for reactivity. An analysis of the epitopes recognized by these mAbs may elucidate sites important in TMEV biological activities.  相似文献   

10.
Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Fourteen clonally isolated mutants demonstrated substantial resistance to multiple monoclonal antibodies, including K3-4C8-K3-2F2 and B5-B3. In addition, 13 mutants demonstrated a 10-fold or greater reduction in neutraliztion mediated by polyclonal human antibody. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.  相似文献   

11.
12.
13.
14.
15.
Here we report on the use of spectral map analysis of time-paired sequential neutralization data of 11 serum samples of a chimpanzee naturally infected with a simian immunodeficiency virus (SIVcpz-ant) and 8 primary consecutive SIVcpz-ant isolates, taken at about 4-month intervals. The analysis reveals the existence of three SIVcpz-ant isolate and serum neutralization clusters. Each cluster groups virus isolates and/or sera based on similarities of their neutralization spectra. On average, neutralization escape mutants emerged after 15 months and mounted a neutralization response approximately 8 months later. The entire gp160 regions of eight consecutive isolates were sequenced and analyzed by a new statistical method called polygram, which allowed the deduction of amino acid sequence motifs of gp160 which were specific for SIVcpz-ant isolates belonging to the same isolate neutralization clusters. Changes in specific amino acid quadruplets in V1, V2, C3, V4, V5, and CD4 domains of gp120 and gp40 were seen to correlate with the neutralization clusters with most of the specific changes occurring in the V4 region. This method of analysis may facilitate an understanding of the study of the dynamic interplay between human immunodeficiency virus (HIV) and host neutralization responses as well as providing possible insights into mechanisms of persistence of HIV-1-related lentiviruses in their natural hosts.  相似文献   

16.
IgG1b12, a human monoclonal antibody (MAb) to an epitope overlapping the CD4-binding site on gp120, has broad and potent neutralizing activity against most primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess whether and how escape mutants resistant to IgG1b12 can be generated, we cultured primary HIV-1 strain JRCSF in its presence. An escape mutant emerged which was approximately 100-fold more resistant to neutralization by IgG1b12. Both virion-associated and solubilized gp120 from this variant had a reduced affinity for IgG1b12, and sequencing of its env gene showed that amino acid substitutions had occurred at three positions within gp120. Two (D164N and D182N) were located in V2, and one (P365L) was in C3. By site-directed mutagenesis, we demonstrated that the D182N and P365L mutations, but not D164N, contribute to the IgG1b12-resistant phenotype. However, the former two substitutions, individually or in combination, hinder the replication of the neutralization-resistant virus. Introduction of the D164N substitution into the P365L variant results in a nonviable virus (D164N/P365L). In contrast, addition of D164N to the D182N or D182N/P365L mutant partially restored replicative function to near wild-type levels. Furthermore, we found that all of the IgG1b12-resistant mutant viruses remained sensitive to other human MAbs, such as 2G12 and 2F5, and to the CD4-IgG molecule, except that the P365L-containing mutant was slightly resistant to CD4-IgG. These results suggest that escape from IgG1b12 neutralization is due to a local rather than a global modification of the gp120 structure. Our findings have implications for the therapeutic and prophylactic applications of antibodies for HIV-1 infection.  相似文献   

17.
We compared infection of a murine macrophage-like cell line, J774-1, with two Theiler's murine encephalomyelitis virus subgroup strains. The GDVII strain, which is highly virulent and produces acute polioencephalomyelitis in mice, did not actively replicate in J774-1 cells, although there was a significant inhibition in cellular protein synthesis. In contrast, the DA strain, which is less virulent and causes demyelination with a persistent virus infection, productively infected J774-1 cells; however, there was less virus produced than in BHK-21 cells, and there was little if any cellular protein shutoff. These in vitro data may provide some explanation for the biological activities that are observed between both subgroup strains.  相似文献   

18.
CTL escape mutations have been identified in several chronic infections, including mice infected with mouse hepatitis virus strain JHM. One outstanding question in understanding CTL escape is whether a CD8 T cell response to two or more immunodominant CTL epitopes would prevent CTL escape. Although CTL escape at multiple epitopes seems intuitively unlikely, CTL escape at multiple CD8 T cell epitopes has been documented in some chronically infected individual animals. To resolve this apparent contradiction, we engineered a recombinant variant of JHM that expressed the well-characterized gp33 epitope of lymphocytic choriomeningitis virus, an epitope with high functional avidity. The results show that the presence of a host response to this second epitope protected mice against CTL escape at the immunodominant JHM-specific CD8 T cell epitope, the persistence of infectious virus, and the development of clinical disease.  相似文献   

19.
Experimental autoimmune encephalomyelitis (EAE) is widely regarded as an animal model of the human disease multiple sclerosis. A multitude of studies has investigated the neuroantigen-specific T-cell mediated cytokine pattern present in animals with EAE. In particular, the role of the so-called Th1- and Th2-cytokines has been addressed. In a recent study, it has been demonstrated that IL-23 rather than IL-12 is critical for modulating the character of the developing immune response towards a proinflammatory response and leading to EAE. IL-17 is a crucial effector cytokine, whose production is specifically triggered by IL-23, and it has been shown to be an essential inflammatory mediator in other autoimmune diseases and inflammatory conditions. This led us to investigate the role of IL-17 in EAE. Strong antigen-specific production of IL-17 was demonstrated both in peripheral immune organs and in the CNS in acute and chronic EAE, as demonstrated by ELISPOT and RT-PCR analysis. Therapeutic neutralization of IL-17 with IL-17-receptor-Fc-protein in acute EAE ameliorated clinical symptoms. Neutralization of IL-17 with a monoclonal antibody also ameliorated the disease course. We conclude that IL-17 is crucially involved in the cytokine network as an effector cytokine in EAE.  相似文献   

20.
Little or no antiviral immune response is mounted in athymic nude mice infected with the Daniels strain of Theiler's murine encephalomyelitis virus. In these athymic mice, increasing levels of infectious virus could be detected in the central nervous system. Seventy-five percent (9 of 12) of the nude mice were moribund or dead by 4 weeks postinfection. In contrast, treatment of Theiler's virus-infected nude mice with a neutralizing monoclonal antibody (H7-2) against the viral protein VP-1 resulted in a dramatic reduction of infectious virus within the central nervous system. All antibody-treated nude animals survived beyond 4 weeks postinfection. Monoclonal antibody titers could be maintained by passive transfer in treated nude mice at levels comparable to those of polyclonal antibody titers found in heterozygous infected nu/+ littermates. Areas of demyelination were detected in the untreated animals as early as 7 days after infection with little or no remyelination present. In approximately one-half of the antibody-treated nude animals, no demyelinating lesions were found. However, the rest of these treated mice were found to have areas of both demyelination and remyelination. Thus, anti-Theiler's murine encephalomyelitis virus antibody against VP-1 can play a dramatic role in the survival of mice, clearance of virus, limiting viral spread, and altering the pattern of disease in the absence of a functional T-cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号